Math, asked by dsr5555, 1 year ago

find dy/dx of the given attachment​

Attachments:

Answers

Answered by Anonymous
17

\boxed{\textbf{\large{Step-by-step explanation:}}}

y =  log( \sqrt{( \frac{1 + cosx}{1  - cosx} } )

y =  log( \frac{ \sqrt{(1 + cosx)} }{ \sqrt{(1 - cosx)} } )

y = log \sqrt{(1 + cosx)}  - log \sqrt{(1 - cosx)}

Differentiation wrt x

 \frac{dy}{dx}  =  \frac{d}{dx} (log \sqrt{(1 + cosx)}  - log  \sqrt{(1 -cosx) }

 =  \frac{1}{2 \sqrt{(1 + cosx)} } \times (0 - sinx) -  \frac{1}{2 \sqrt{(1 - cosx)} }   \times (0 + sinx)

 =  \frac{ - sinx}{2 \sqrt{(1 + cosx)} }  -  \frac{sinx}{2 \sqrt{(1 - cosx)} }

 =  \frac{ - sin(2 \sqrt{(1 - cosx)}  - sinx(2  \sqrt{(1 + cosx)}  }{4 \sqrt{(1 + cosx)(1 - cosx)} }

 =  \frac{ - 2sinx( \sqrt{(1 - cosx)} +  \sqrt{(1 + cosx)}  }{4( \sqrt{ {(1)}^{2}  -  {cos}^{2} x}) }

 =  \frac{ - sin( \sqrt{(1 - cosx)}  +  \sqrt{(1 + cosx)} )}{2(sinx)}

 =  -\frac{1}{2}  \times (( \sqrt{1 - cosx) }  +  \sqrt{1  + cosx} )

\frac{dy}{dx}=  - \frac{1}{2}  \times (( \sqrt{1 - cosx) }  +  \sqrt{1  + cosx} )\\

Similar questions