find dy/dx of x log y+ y log x=0
Answers
Answer:
- y ( y + x logy ) / x ( x + ylogx )
Step-by-step explanation:
Given---> x logy + ylogx = 0
To find---> Derivative of given equation
Solution---> ATQ,
x logy + y logx = 0
=> x logy = - y logx
Differrntiating with respect to x, we get,
=> d / dx ( x logy ) = - d / dx ( y logx )
=> x d / dx ( logy ) + logy d / dx ( x )
= - { y d / dx ( logx ) + ( logx ) d / dx ( y ) }
=> x ( 1 / y ) dy/dx + logy ( 1 ) =
- { y ( 1 / x ) + logx dy / dx }
=> ( x / y ) dy / dx + logy = - y/x - logx dy / dx
=> ( x / y ) dy / dx + logx dy / dx = - logy - y / x
=> { ( x / y ) + logx } dy / dx = - ( x logy + y ) / x
=> {( x + y logx ) / y } dy/dx = - ( x logy + y ) / x
=> dy /d = - y ( x logy + y ) / x ( x + y logx )
Formulee applied--->
1) d/dx ( u v )= u dv/dx + v du/dx
2) d/dx ( x ) = 1
3) d/dx ( logx ) = 1 / x
Answer:
sorry don't know the answer XD