Math, asked by shaswatisahoo745, 1 month ago

Find (dy)/(dx) of y=cosec(tan sqrt(x)).​

Answers

Answered by mathdude500
7

\large\underline{\sf{Solution-}}

Given function is

\rm :\longmapsto\:y = cosec(tan \sqrt{x})

On differentiating both sides w. r. t. x, we get

\rm :\longmapsto\:\dfrac{d}{dx}y =\dfrac{d}{dx} cosec(tan \sqrt{x})

We know,

\red{ \boxed{ \sf{ \:\dfrac{d}{dx}cosecx =  -  \: cosecx \: cotx \:  \: }}}

So, using this, we get

\rm :\longmapsto\:\dfrac{dy}{dx} =  -  \: cosec(tan \sqrt{x}) \: cot(tan \sqrt{x})\dfrac{d}{dx}tan \sqrt{x}

We know,

\red{ \boxed{ \sf{ \:\dfrac{d}{dx}tanx =  {sec}^{2}x}}}

So, using this, we get

\rm :\longmapsto\:\dfrac{dy}{dx} =  -  \: cosec(tan \sqrt{x}) \: cot(tan \sqrt{x}) {sec}^{2} \sqrt{x} \dfrac{d}{dx} \sqrt{x}

We know,

\red{ \boxed{ \sf{ \:\dfrac{d}{dx} \sqrt{x} =  \frac{1}{2 \sqrt{x} }}}}

So, using this, we get

\rm :\longmapsto\:\dfrac{dy}{dx} =  -  \: cosec(tan \sqrt{x}) \: cot(tan \sqrt{x}) {sec}^{2} \sqrt{x} \times \dfrac{1}{2 \sqrt{x} }

Therefore,

\red{ \boxed{ \sf{ \:\dfrac{dy}{dx} =  -  \:  \frac{cosec(tan \sqrt{x}) \: (cot(tan \sqrt{x})  \: {sec}^{2} \sqrt{x} }{2 \sqrt{x} }}}}

Additional Information :-

\begin{gathered}\boxed{\begin{array}{c|c} \bf f(x) & \bf \dfrac{d}{dx}f(x) \\ \\  \frac{\qquad \qquad}{} & \frac{\qquad \qquad}{} \\ \sf k & \sf 0 \\ \\ \sf sinx & \sf cosx \\ \\ \sf cosx & \sf  -  \: sinx \\ \\ \sf tanx & \sf  {sec}^{2}x \\ \\ \sf cotx & \sf  -  {cosec}^{2}x \\ \\ \sf secx & \sf secx \: tanx\\ \\ \sf cosecx & \sf  -  \: cosecx \: cotx\\ \\ \sf  \sqrt{x}  & \sf  \dfrac{1}{2 \sqrt{x} } \\ \\ \sf logx & \sf \dfrac{1}{x}\\ \\ \sf  {e}^{x}  & \sf  {e}^{x}  \end{array}} \\ \end{gathered}

Similar questions