Math, asked by Mafiya8869, 11 months ago

Find dy/dx of y=(logsinx/logcosx)(logcosx/logsinx)^-1

Answers

Answered by Anonymous
7

\underline{\textbf{\large{Step-by-step explanation:}}}

y \:  =  \:  \frac{(log \: sinx)}{(log \: cosx)}  \times  {( \frac{(log \: cosx)}{(log \: sinx)}) }^{ - 1}  \\

 =  \frac{(log \: sinx) \: }{(log \: cosx)}  \times  \frac{1}{  \frac{(log \: cosx)}{(log \: sinx)} }  \\

 = ( \frac{(log \: sinx)}{(log \: cosx)} ) \times ( \frac{(log \: sinx)}{(log \: cosx)} ) \\

 =  \frac{ {(log \: sinx)}^{2} }{ {(log \: cosx)}^{2} }  \\

 =   {(  \frac{log \: sinx}{log \: cosx}) }^{2}  \\

  =  {\: ( log \: sinx \:  - log \: cosx \:) }^{2}

\underline{\textbf{Differentiation wrt x : }}

  \frac{dy}{dx}  =  \frac{d}{dx}  {(log  sinx   - log  cosx)  }^{2} </h3><h3>

= 2(log \: sinx \:  - log \: cosx)\\  \times [ ( \frac{1}{sin x} )(cos x)  - ( \frac{1}{cosx} )( - sinx)]

 = 2(log \: sinx \:  - log \: cosx)(cotx \:  + tanx)

\boxed{\textbf{dy / dx = </p><p>  2(log  sinx   - log  cosx) (cotx + tanx)}}

Answered by rishu6845
2

Step-by-step explanation:

plzz give me brainliest ans and plzzzz follow me

Attachments:
Similar questions