Physics, asked by simra2387, 11 months ago

find dy/dx of y=x^(-2/3)​

Answers

Answered by kaushik05
37

  \huge \boxed{ \boxed{ \red{\mathfrak{solution}}}}

To find :

dy/dx

Given:

y =  {x}^{ -  \frac{2}{3} }  \\  \\

Differentiate w.r.t. x

  \implies\frac{dy}{dx}  =  \frac{d}{dx} ( {x}^{ -  \frac{2}{3} } ) \\  \\  \implies \:  \frac{dy}{dx}  =  -  \frac{2}{3}  {x}^{ -  \frac{2}{3} - 1 }  \\  \\  \implies \:  \frac{dy}{dx}  =  -  \frac{2}{3}  {x}^{ \frac{ - 2 - 3}{3} }  \\  \\  \implies \:  \frac{dy}{dx}  =  -  \frac{2}{3}  {x}^{ -  \frac{5}{3} }

Formula used:

 \huge{  \boxed{ \green{\bold{ \frac{d}{dx}  {x}^{n}  = n {x}^{n - 1} }}}}

Answered by Anonymous
5

\huge\bold{Question}

find dy/dx of y=x^(-2/3) ?

\huge\bold{Answer}

According to the question we have to find “ dy/dx ”

Given:

\begin{lgathered}y = {x}^{ - \frac{2}{3} } \\ \\\end{lgathered}

By using this Formula , we find the answer :-

\huge\tt{ \frac{d}{dx} {x}^{n} = n {x}^{n - 1} }

Now , we differentiate with respect to “ x

\begin{lgathered}\tt\frac{dy}{dx} = \frac{d}{dx} ( {x}^{ - \frac{2}{3} } ) \\ \\\tt  \frac{dy}{dx} = - \frac{2}{3} {x}^{ - \frac{2}{3} - 1 } \\ \\ \tt  \frac{dy}{dx} = - \frac{2}{3} {x}^{ \frac{ - 2 - 3}{3} } \\ \\  \tt\frac{dy}{dx} = - \frac{2}{3} {x}^{ - \frac{5}{3} }\end{lgathered}

Similar questions