Math, asked by mosfiqahmed200, 1 year ago

find dy/dx
log \sqrt{1 -  {x}^{2} }

Answers

Answered by kaushik05
21

  \huge \red{\mathfrak{solution}}

To find :

  \frac{d}{dx} ( log( \sqrt{1 -  {x}^{2} } )

Here we use chain rule :

  \rightarrow \:  \frac{d}{dx} ( log( \sqrt{1 -  {x}^{2} } ))  \times  \frac{d}{dx} ( \sqrt{1 -  {x}^{2} } ) \times  \frac{d}{dx} (1 -  {x^{2} }) \\  \\  \rightarrow \:  \frac{1}{ \sqrt{1 -  {x}^{2} } }  \times  \frac{1}{2 \sqrt{1 -  {x}^{2} } }  \times (0 - 2x) \\  \\  \rightarrow \:  \frac{ - 2x}{2(1 -  {x}^{2}) }  \\  \\   \rightarrow \:   \cancel \frac{2}{ 2}  (\frac{ - x}{1 -  {x}^{2} } ) \\  \\  \rightarrow \:   \frac{ - x}{1 -  {x}^{2} }  \\  \\  or  \\  \\  \rightarrow \:  \frac{x}{ {x}^{2}  - 1}

Formula used :

  \boxed{ \purple{ \bold{\frac{d}{dx}  log(x)  =  \frac{1}{x} }}}

 \boxed{ \bold{ \green{ \frac{d}{dx}  \sqrt{x}  =  \frac{1}{2 \sqrt{x} } }}}

  \boxed{ \bold{\frac{d}{dx}  {x}^{y}  = y {x}^{y - 1} }}

Answered by Sharad001
56

Question :-

 \sf{find \: \:   \frac{dy}{dx} } \\  \implies \sf{  log( \sqrt{1 -  {x}^{2} } ) }

Answer :-

\rightarrow  \boxed{\sf{  \frac{dy}{dx}  =  \frac{ - x}{1 -  {x}^{2} } }} \:

Formula used :-

  \large \sf{\star  \:  \frac{d}{dx}  log(x)  =  \frac{1}{x} } \\  \\  \large \star \sf{ \frac{d}{dx}  \sqrt{x}  =  \frac{1}{2 \sqrt{x} } }

Solution :-

 \sf{ \:  \:  let \:  \:   y \:  =  log( \sqrt{1 -  {x}^{2} } ) } \\  \\ \sf{ differentiate \: with \: respect \: to \: x} \\  \\  \rightarrow \sf{ \frac{dy}{dx}  =  \frac{d}{dx}  log( \sqrt{1 -  {x}^{2} } ) } \\  \\  \rightarrow \sf{ \frac{dy}{dx}  =  \frac{1}{ \sqrt{1 -  {x}^{2} } }  \:  \frac{d}{dx}  \sqrt{1 -  {x}^{2} } } \\  \\  \rightarrow \sf{ \frac{dy}{dx}  =  \frac{1}{ \sqrt{1 -  {x}^{2} } }  \times  \frac{1}{2 \sqrt{1 -  {x}^{2} } }  \:  \frac{d}{dx} (1 -  {x}^{2} )} \\  \\  \rightarrow \sf{ \frac{dy}{dx}  =  \frac{1}{2(1 -  {x}^{2} )} (0 - 2x)} \\  \\  \rightarrow  \boxed{\sf{  \frac{dy}{dx}  =  \frac{ - x}{1 -  {x}^{2} } }}

______________________________

Similar questions