Find dy/dx were y = (sinx)^cosx
Answers
Answered by
1
y = e^log^(sinx)^cosx
y = e^(cosx.logsinx)
dy/dx = e^(cosx.logsinx).d/dx(cosx.logsinx)
y' = e^(cosx.logsinx).(-sinx.logsinx+cosx.<1/sinx>cosx)
y' = e^(cosx.logsinx).(-sinx.logsinx+cosx.tanx)
y' = -(sinx)^cosx.[since.logsinx+cosxtanx]......answer.
anuanu45:
can u answer in a more simple model
Similar questions