Math, asked by anuanu45, 1 year ago

Find dy/dx were y = (sinx)^cosx

Answers

Answered by Anonymous
1

y = e^log^(sinx)^cosx

y = e^(cosx.logsinx)

dy/dx = e^(cosx.logsinx).d/dx(cosx.logsinx)

y' = e^(cosx.logsinx).(-sinx.logsinx+cosx.<1/sinx>cosx)

y' = e^(cosx.logsinx).(-sinx.logsinx+cosx.tanx)

y' = -(sinx)^cosx.[since.logsinx+cosxtanx]......answer.



anuanu45: can u answer in a more simple model
anuanu45: how did you get e
Anonymous: I too e to make differentiation easier.
Similar questions