Math, asked by dmthakur0416, 2 months ago

Find dy/dx
when:
dx
y = x power 1/x

Answers

Answered by SparklingBoy
168

-------------------------------

▪ Given :-

 \large \bf{y =  {x}^{1/x }}

-------------------------------

▪ To Find :-

 \purple{  \bf\large \dfrac{dy}{dx} }

-------------------------------

▪ Solution :-

We Have ,

 \large \mathtt{y = x {}^{1/x} }

 \large \bigstar \:   \underline{ \pmb{ \mathfrak{  \text{T}a \text king    \:  \: \text Log \:    \: Both  \:  \:  \text Side \:  \:  }}} :  -  \\

 :  \longmapsto   \sf \log y  =  \log  { \mathtt x}^{1/ \mathtt x}  \\  \\ :  \longmapsto \sf \log y =  \frac{1}{ \mathtt x}  \log \mathtt x \\  \bf \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \{ \because  log {m}^{n}  = n. log m \}

\large \bigstar \:   \underline{ \pmb{ \mathfrak{ Differentiating  \: both  \: sides  \:  \text{w.r.t x}  }}}

:  \longmapsto  \sf\dfrac{1}{y} . \dfrac{dy}{d \mathtt x}  =  \frac{1}{ \mathtt x} . \frac{d}{d\mathtt x} ( \log  \mathtt x)+  \log \mathtt x. \frac{d}{d\mathtt x} (x {}^{ -1} ) \\  \bf \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \{ \because  Product\:\:Rule \}\\  \\ :  \longmapsto \sf \frac{1}{y}  . \frac{dy}{d\mathtt x}  =  \frac{1}{\mathtt x} . \frac{1}{\mathtt x}  +  \log \mathtt x. \bigg( -  \frac{  1}{ {\mathtt x}^{2} }  \bigg ) \\  \\ :  \longmapsto \sf \frac{1}{y} . \frac{dy}{d\mathtt x}  =  \frac{1}{ {\mathtt x}^{2}  }  -  \frac{ \log\mathtt x}{ {\mathtt x}^{2} }  \\  \\ :  \longmapsto \sf \frac{dy}{d\mathtt x}  = y \bigg( \frac{1 -  \log\mathtt x}{ {\mathtt x}^{2} }  \bigg) \\  \\ \large\purple{ :  \longmapsto \pmb{ \underline {\boxed{{ \frac{dy}{dx}  =  \frac{x {}^{1/x} }{ {x}^{2}  } \bigg(  1 -  \log x\bigg)} }}}}

 \Large \red{\mathfrak{  \text{W}hich \:   \: is  \:  \: the  \:  \: required} }\\ \huge \red{\mathfrak{ \text{ A}nswer.}}

-------------------------------

Answered by NewtonBaba420
9

 \large \mathtt{y = x {}^{1/x} }

 \large \underline{ \pmb{ \mathcal{  \text{T}a \text king    \:  \: \text Log \:    \: Both  \:  \:  \text Side \:  \:  }}} :  -  \\

 :  \implies   \sf \log y  =  \log  { \mathtt x}^{1/ \mathtt x}  \\  \\ :  \implies \sf \log y =  \frac{1}{ \mathtt x}  \log \mathtt x

\large  \:   \underline{ \pmb{ \mathcal{ Differentiating  \: both  \: sides  \:  \text{w.r.t x}  }}}

:  \implies  \sf\dfrac{1}{y} . \dfrac{dy}{d \mathtt x}  =  \frac{1}{ \mathtt x} . \frac{d}{d\mathtt x} ( \log  \mathtt x)+  \log \mathtt x. \frac{d}{d\mathtt x} (x {}^{ -1} ) \\  \\ :  \implies \sf \frac{1}{y}  . \frac{dy}{d\mathtt x}  =  \frac{1}{\mathtt x} . \frac{1}{\mathtt x}  +  \log \mathtt x. \bigg( -  \frac{  1}{ {\mathtt x}^{2} }  \bigg ) \\  \\ :  \implies \sf \frac{1}{y} . \frac{dy}{d\mathtt x}  =  \frac{1}{ {\mathtt x}^{2}  }  -  \frac{ \log\mathtt x}{ {\mathtt x}^{2} }  \\  \\ :  \implies \sf \frac{dy}{d\mathtt x}  = y \bigg( \frac{1 -  \log\mathtt x}{ {\mathtt x}^{2} }  \bigg) \\  \\ \red{ :  \implies \bf{ \underline {\boxed{{ \bf\frac{dy}{dx}  =  \frac{x {}^{1/x} }{ {x}^{2}  } \bigg(  1 -  \log x\bigg)} }}}}

Similar questions