Math, asked by TheEmpress, 1 year ago

find dy/dx
when
x = a {cos}^{3} t \:  \: and \:  \: y = a {sin}^{3} t

Answers

Answered by rumourgirl
13

HEY BUDDY ♥

HERE'S THE ANSWER ✌

⤴⤴⤴⤴⤴⤴⤴

HOPE YOU FIND IT HELPFUL ☺☺☺

Attachments:
Answered by Anonymous
0

Answer:

= - tan t

Step-by-step explanation:

We have,

(x = a \:  { \cos }^{3} t \: )(y = a \:  {sin}^{3} t)

 \frac{dx}{dt}  = 3a \:  {cos}^{2} t \:  \frac{d}{dt} cos(t) =  - 3a {cos}^{2} t \:  \sin(t)

 =  \frac{dy}{dt}  = 3a {sin}^{2} t \:  \frac{d}{dt} (sin \: t) = 3a \:  {sin}^{2} t \: cos \: t

 =  \frac{dy}{dx}  =  \frac{ \frac{dy}{dt} }{ \frac{dx}{dt} }  =  \frac{3a \:  {sin}^{2}t \: cos \: t }{ - 3a \:  {cos}^{2}t \: sin \: t \:  }

= - tan t

Thank you..☺️☺️

Similar questions