Math, asked by karmakarbishal314, 1 month ago

find dy/dx when x= 2at/1+t² any y= 1-t/1+t²​

Answers

Answered by sandy1816
0

x =  \frac{2at}{1 +  {t}^{2} }  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: y =  \frac{1 -  {t}^{2} }{1 +  {t}^{2} }  \\ put \:  \:  \: t = tan \theta \\ \\  x =  \frac{a2tan \theta}{1 +  {tan}^{2} \theta  }  \\ x = asin2 \theta \\  \frac{dx}{d \theta}  = 2acos2 \theta \\  \\ y =  \frac{1 -  {tan}^{2} \theta }{1 +  {tan}^{2} \theta }  \\ y = cos2 \theta \\  \frac{dy}{d \theta}  =  - 2sin2 \theta \\  \\  \therefore \:  \:  \:  \:  \frac{dy}{dx}  =  \frac{dy}{d \theta}  \times  \frac{d \theta}{dx}  \\  \\  =  \frac{ - 2sin 2\theta}{2acos2 \theta}  \\  \\  =  -  \frac{1}{a} tan2 \theta \\  \\  =  -  \frac{1}{a}  \frac{2tan \theta}{1 -  {tan}^{2}  \theta}  \\  \\  =  -  \frac{1}{a}  \frac{2t}{1 -  {t}^{2} }

Similar questions