Math, asked by Pavani5623, 9 months ago

Find dy/dx when x=2at and y=2at^2

Answers

Answered by rishu6845
11

Answer:

\boxed{\bold{\huge{\pink{2 \: t}}}}

Step-by-step explanation:

\bold{\underline{\orange{Given}}}\longrightarrow \\ x \:  = 2at \:  \: and \: y = 2a {t}^{2}

\bold{\underline{\red{To \: find}}} \\ value \: of \: \dfrac{dy}{dx}

\bold{\underline{\blue{Concept \: used}}}\longrightarrow \\ 1) \frac{d}{dx}( {x}^{n}  ) = n \: x ^{n - 1}  \\ 2) \dfrac{dy}{dx}  =  \dfrac{ \dfrac{dy}{dt} }{ \dfrac{dx}{dt} }

\bold{\underline{\green{Solution}}}\longrightarrow \\ x \:  = 2at \\ differentiating \: with \: respect \: to \: t \\  \dfrac{dx}{dt}  =  \dfrac{d}{dt} (2at) \\  \dfrac{dx}{dt}  = 2a \:  \dfrac{d}{dt} (t) \\  \dfrac{dx}{dt}  = 2a \: (1) \\  \dfrac{dx}{dt}  = 2a

y \:  = 4at \\ differentiating \: with \: respect \: to \: t  \\  \dfrac{dy}{dt}  =  \dfrac{d}{dt} (2a {t}^{2} ) \\   \dfrac{dy}{dt}  = 2a \dfrac{d}{dt} ( {t}^{2} ) \\  \dfrac{dy}{dt}  =2 a \: (2 {t}^{2 - 1} ) \\  \dfrac{dy}{dt}  = 4at

now

 \dfrac{dy}{dx}  =  \dfrac{ \dfrac{dy}{dt} }{ \dfrac{dx}{dt} }  \\  \dfrac{dy}{dx}  =  \dfrac{4at}{2a}  \\  \dfrac{dy}{dx}  = 2t

Answered by sandy1816
0

given

x = 2at \:  \:  \: and \:  \: y = 2a {t}^{2}

we have to find dy/dx

Now

x = 2at \\  \\  \frac{dx}{dt}  = 2a \frac{d}{dt} t \\  \\  \frac{dx}{dt}  = 2a

And

y = 2a {t}^{2}  \\  \\  \frac{dy}{dt}  = 2a.2t \\  \\  \frac{dy}{dt}  = 4at

We can write

 \frac{dy}{dx}  =  \frac{dy}{dt}  \times  \frac{dt}{dx}  \\  \\  \frac{dy}{dx}  = 4at \times  \frac{1}{2a}  \\  \\  \frac{dy}{dx}  = 2t

Similar questions