Math, asked by akshathgoyal03, 3 months ago

find dy/dx when x=y(1 + log x)​

Answers

Answered by shadowsabers03
3

Given,

\longrightarrow x=y(1+\log x)

Differentiating wrt x,

\longrightarrow \dfrac{dx}{dx}=\dfrac{d}{dx}\left[y(1+\log x)\right]

Applying product rule,

\longrightarrow 1=\dfrac{dy}{dx}(1+\log x)+\dfrac{y}{x}

\longrightarrow 1=\dfrac{dy}{dx}(1+\log x)+\dfrac{y(1+\log x)}{x(1+\log x)}

\longrightarrow 1=\dfrac{dy}{dx}(1+\log x)+\dfrac{x}{x(1+\log x)}

\longrightarrow 1=\dfrac{dy}{dx}(1+\log x)+\dfrac{1}{1+\log x}

\longrightarrow \dfrac{dy}{dx}(1+\log x)=1-\dfrac{1}{1+\log x}

\longrightarrow \dfrac{dy}{dx}(1+\log x)=\dfrac{\log x}{1+\log x}

\longrightarrow\underline{\underline{\dfrac{dy}{dx}=\dfrac{\log x}{\left(1+\log x\right)^2}}}

Similar questions