Math, asked by Zochhuana, 1 year ago

find dy/dx when:xy log(x+y)=1

Answers

Answered by ommritishkumar
5
the answer is above....
Attachments:
Answered by aquialaska
2

Answer:

Given:

xy log(x+y)=1

To find: \frac{\mathrm{d} y}{\mathrm{d} x}

We use Product rule,

(x.y.z)' = x.y.z' + x.z.y' + y.z.x'

Consider,

xy log(x+y)=1

Derivate both sides,

\frac{\mathrm{d}(x.y.log(x+y))}{\mathrm{d}x}=\frac{\mathrm{d}(1)}{\mathrm{d} x}

x.y.\frac{\mathrm{d}(log(x+y))}{\mathrm{d}x}+x.log(x+y).\frac{\mathrm{d}(y)}{\mathrm{d}x}+y.log(x+y).\frac{\mathrm{d}(x)}{\mathrm{d}x}=0

x.y.\frac{1}{x+y}\frac{\mathrm{d}(x+y)}{\mathrm{d}x}+x.log(x+y).\frac{\mathrm{d}y}{\mathrm{d}x}+y.log(x+y)=0

x.y.\frac{1}{x+y}(\frac{\mathrm{d}(x))}{\mathrm{d}x}+\frac{\mathrm{d} (y)}{\mathrm{d} x})+x.log(x+y).\frac{\mathrm{d}y}{\mathrm{d}x}=-y.log(x+y)

\frac{xy}{x+y}+\frac{xy}{x+y}.\frac{\mathrm{d} (y)}{\mathrm{d} x}+x.log(x+y).\frac{\mathrm{d}y}{\mathrm{d}x}=-y.log(x+y)

(\frac{xy}{x+y}+x.log(x+y))\frac{\mathrm{d}y}{\mathrm{d}x}=-y.log(x+y)-\frac{xy}{x+y}

\frac{\mathrm{d}y}{\mathrm{d}x}=\frac{-y.log(x+y)-\frac{xy}{x+y}}{\frac{xy}{x+y}+x.log(x+y)}

\frac{\mathrm{d}y}{\mathrm{d}x}=\frac{-y(x+y).log(x+y)-xy}{xy+x(x+y)log(x+y)}

Similar questions