Math, asked by regmiyeshoda, 10 months ago

find dy/dx when y= 1/(secx-tanx)

Answers

Answered by kaushik05
38

 \huge{ \red{ \mathfrak{solution}}}

Given:

 \boxed{ \bold{y \:  =  \frac{1}{secx \:  - tanx} }}

To find :

dy/dx

First solve y

 \star \: y =  \frac{1}{secx - tanx}   \\  \\  \rightarrow \: y =  \frac{1}{secx - tanx}  \times  \frac{secx + tanx}{secx + tanx}  \\  \\  \rightarrow y =  \frac{secx + tanx}{ {sec}^{2}x -  {tan}^{2} x }

As we know that

sec^2@-tan^2@ = 1

 \rightarrow y = \: secx + tanx

Now differentiate w.r.t X

 \implies \frac{d}{dx} (secx + tanx) \\  \\  \implies \frac{d}{dx} (secx) +  \frac{d}{dx} (tanx) \\  \\  \implies \: secx \: tanx \:  +  {sec}^{2} x \\  \\  \implies \: secx(tanx + secx)

Formula used :

 \red{ \star} \boxed{ \bold{ \frac{d}{dx} secx = secx \: tanx}} \\  \\   \red\star  \boxed{ \bold{\frac{d}{dx} tanx =  {sec}^{2} x}}


Anonymous: Awesome!
kaushik05: thnku
Answered by Itsritu
6

Answer:

formula \: used \:  =

 ||  \frac{d}{dx}secx \:  =  \: secx \: tanx \: .

 ||  \frac{d}{dx}tanx \:  = sec {}^{2} x.

to \: find \:  = dy \:  \:and \: dx.

first \: we \: can \: solve \: y \: .

y \ =  \frac{1}{secx \:  -  \: tanx \: }

y \times \frac{1}{secx \:  -  \: tanx \: }  \times  \frac{secx \:  +  \: tanx \: }{secx \:  +  \: tanx \: }

y \times \frac{secx \:  +  \: tanx}{  {sec}^{2} x \:  - tan^{2} x}

therefore \: we \: know \: that \:  =

 {sec}^{2}at \: the \: rate \:  -  \: tan {}^{2}at \: the \: rate \:  =  \: 1.

y \:  =  \: secx + tanx \: .

now \: differntiate \: w.r.t \: x.

 \frac{d}{dx} (secx + tanx).

 \frac{d}{dx} (secx \:  +  \frac{d}{dx}  \: ( \: tanx \: ) \: .

secx \: tanx \:  +  \: sec {}^{2}x.

secx \: ( \: tanx \:  +  \: secx \: ) .

Similar questions