Math, asked by Aasthewmeshwik, 1 year ago

Find dy/dx when y=logx/x

Answers

Answered by MaheswariS
2

\underline{\textbf{Given:}}

\mathsf{y=\dfrac{logx}{x}}

\underline{\textbf{To find:}}

\mathsf{\dfrac{dy}{dx}}

\underline{\textbf{Solution:}}

\underline{\textsf{Quotient rule:}}

\boxed{\mathsf{\dfrac{d\left(\dfrac{u}{v}\right)}{dx}=\dfrac{v\;\dfrac{du}{dx}-u\;\dfrac{dv}{dx}}{v^2}}}

\mathsf{Consider,}

\mathsf{y=\dfrac{logx}{x}}

\textsf{Differentiate with respect to 'x,}

\textsf{by quotient rule}

\mathsf{\dfrac{dy}{dx}=\dfrac{x\;\dfrac{d(logx)}{dx}-logx\;\dfrac{d(x)}{dx}}{x^2}}

\mathsf{\dfrac{dy}{dx}=\dfrac{x\;\left(\dfrac{1}{x}\right)-logx\;(1)}{x^2}}

\implies\boxed{\mathsf{\dfrac{dy}{dx}=\dfrac{1-logx}{x^2}}}

\underline{\textbf{Find more:}}

If y = √1+cos 2X /√1-cos 2X ,find dy/dx.https://brainly.in/question/4712606

Similar questions