Math, asked by indilladernier, 4 months ago

find dy /dx when y=tan-1 (x2)​

Answers

Answered by abhicks
2

Answer:

Important Property:

 \frac{d}{dx} ( { \tan}^{ - 1} x ) =  \frac{1}{1 +  {x}^{2} }

Step-by-step explanation:

y =  {tan}^{ - 1} ( {x}^{2} )

let \:  {x}^{2}  = p

 =  > y =  {tan}^{ - 1} p

Differentiating on both sides, we get

 \frac{dy}{dx}  =  \frac{d}{dx} ( {tan}^{ - 1} p)

 =  >  \frac{dy}{dx}  =  \frac{1}{1 +  {p}^{2} }   \times \frac{dp}{dx}

 =  >  \frac{dy}{dx}  =  \frac{1}{1 +  {( {x}^{2} })^{2} }   \times \frac{d}{dx} ( {x}^{2} )

 =  >  \frac{dy}{dx}  =  \frac{1}{1 +  {x}^{4} }  \times 2x

 =  >  \frac{dy}{dx}  =  \frac{2x}{1 +  {x}^{4} }

Similar questions