Math, asked by snehaknair3577, 6 hours ago

Find dy/DX when:
Y=√x+1 +√x-1 /√x+1 -√x-1

Answers

Answered by mathdude500
2

\large\underline{\sf{Solution-}}

Given function is

\rm :\longmapsto\:y = \dfrac{ \sqrt{x + 1}  +  \sqrt{x - 1} }{ \sqrt{x + 1}  -  \sqrt{x - 1} }

On rationalizing the denominator, we get

\rm :\longmapsto\:y = \dfrac{ \sqrt{x + 1}  +  \sqrt{x - 1} }{ \sqrt{x + 1}  -  \sqrt{x - 1} } \times \dfrac{\sqrt{x + 1}  +  \sqrt{x - 1} }{\sqrt{x + 1}  +  \sqrt{x - 1} }

We know,

\rm :\longmapsto\:\boxed{\tt{(x + y)(x - y) =  {x}^{2}  -  {y}^{2}}}

So, using this, we get

\rm :\longmapsto\:y = \dfrac{ {(\sqrt{x + 1}  +  \sqrt{x - 1} )}^{2} }{ {( \sqrt{x + 1} )}^{2}  -  {( \sqrt{x - 1} )}^{2} }

\rm :\longmapsto\:y = \dfrac{x + 1 + x - 1 + 2 \sqrt{x + 1} \:  \sqrt{x - 1}  }{(x + 1) - (x - 1)}

\rm :\longmapsto\:y = \dfrac{2x+ 2 \sqrt{ {x}^{2} - 1} }{x + 1 - x  +  1}

\rm :\longmapsto\:y = \dfrac{2x+ 2 \sqrt{ {x}^{2} - 1} }{2}

\rm :\longmapsto\:y = x +  \sqrt{ {x}^{2}  - 1}

On differentiating both sides w. r. t. x, we get

\rm :\longmapsto\:\dfrac{d}{dx} y =\dfrac{d}{dx}\bigg[ x +  \sqrt{ {x}^{2}  - 1}\bigg]

We know, .

\boxed{\tt{ \dfrac{d}{dx} \sqrt{x} =  \frac{1}{2 \sqrt{x} }}} \:  \: and \:  \: \boxed{\tt{ \dfrac{d}{dx}x = 1}}

So, using this, we get

\rm :\longmapsto\:\dfrac{dy}{dx} = 1 + \dfrac{1}{2 \sqrt{ {x}^{2}  - 1} }\dfrac{d}{dx}( {x}^{2} - 1)

We know,

\boxed{\tt{ \dfrac{d}{dx} {x}^{n} =  {nx}^{n - 1}}} \\   \\ and \\ \\ \boxed{\tt{ \dfrac{d}{dx}k \:  =  \: 0 \: }} \:  \:  \:  \:

So, using this, we get

\rm :\longmapsto\:\dfrac{dy}{dx} = 1 + \dfrac{1}{2 \sqrt{ {x}^{2}  - 1} }(2x)

\rm :\longmapsto\:\dfrac{dy}{dx} = 1 + \dfrac{x}{\sqrt{ {x}^{2}  - 1} }

Hence,

 \red{\rm :\longmapsto\:\boxed{\tt{ \dfrac{dy}{dx} = 1 + \dfrac{x}{\sqrt{ {x}^{2}  - 1} }}}}

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Additional Information

\begin{gathered}\boxed{\begin{array}{c|c} \bf f(x) & \bf \dfrac{d}{dx}f(x) \\ \\  \frac{\qquad \qquad}{} & \frac{\qquad \qquad}{} \\ \sf k & \sf 0 \\ \\ \sf sinx & \sf cosx \\ \\ \sf cosx & \sf  -  \: sinx \\ \\ \sf tanx & \sf  {sec}^{2}x \\ \\ \sf cox & \sf  -  {cosec}^{2}x \\ \\ \sf secx & \sf secx \: tanx\\ \\ \sf cosecx & \sf  -  \: cosecx \: cotx\\ \\ \sf  \sqrt{x}  & \sf  \dfrac{1}{2 \sqrt{x} } \\ \\ \sf logx & \sf \dfrac{1}{x}\\ \\ \sf  {e}^{x}  & \sf  {e}^{x}  \end{array}} \\ \end{gathered}

Answered by OoAryanKingoO78
17

Answer:

\large\underline{\sf{Solution-}}

Given function is

\rm :\longmapsto\:y = \dfrac{ \sqrt{x + 1}  +  \sqrt{x - 1} }{ \sqrt{x + 1}  -  \sqrt{x - 1} }

On rationalizing the denominator, we get

\rm :\longmapsto\:y = \dfrac{ \sqrt{x + 1}  +  \sqrt{x - 1} }{ \sqrt{x + 1}  -  \sqrt{x - 1} } \times \dfrac{\sqrt{x + 1}  +  \sqrt{x - 1} }{\sqrt{x + 1}  +  \sqrt{x - 1} }

We know,

\rm :\longmapsto\:\boxed{\tt{(x + y)(x - y) =  {x}^{2}  -  {y}^{2}}}

So, using this, we get

\rm :\longmapsto\:y = \dfrac{ {(\sqrt{x + 1}  +  \sqrt{x - 1} )}^{2} }{ {( \sqrt{x + 1} )}^{2}  -  {( \sqrt{x - 1} )}^{2} }

\rm :\longmapsto\:y = \dfrac{x + 1 + x - 1 + 2 \sqrt{x + 1} \:  \sqrt{x - 1}  }{(x + 1) - (x - 1)}

\rm :\longmapsto\:y = \dfrac{2x+ 2 \sqrt{ {x}^{2} - 1} }{x + 1 - x  +  1}

\rm :\longmapsto\:y = \dfrac{2x+ 2 \sqrt{ {x}^{2} - 1} }{2}

\rm :\longmapsto\:y = x +  \sqrt{ {x}^{2}  - 1}

On differentiating both sides w. r. t. x, we get

\rm :\longmapsto\:\dfrac{d}{dx} y =\dfrac{d}{dx}\bigg[ x +  \sqrt{ {x}^{2}  - 1}\bigg]

We know, .

\boxed{\tt{ \dfrac{d}{dx} \sqrt{x} =  \frac{1}{2 \sqrt{x} }}} \:  \: and \:  \: \boxed{\tt{ \dfrac{d}{dx}x = 1}}

So, using this, we get

\rm :\longmapsto\:\dfrac{dy}{dx} = 1 + \dfrac{1}{2 \sqrt{ {x}^{2}  - 1} }\dfrac{d}{dx}( {x}^{2} - 1)

We know,

\boxed{\tt{ \dfrac{d}{dx} {x}^{n} =  {nx}^{n - 1}}} \\   \\ and \\ \\ \boxed{\tt{ \dfrac{d}{dx}k \:  =  \: 0 \: }} \:  \:  \:  \:

So, using this, we get

\rm :\longmapsto\:\dfrac{dy}{dx} = 1 + \dfrac{1}{2 \sqrt{ {x}^{2}  - 1} }(2x)

\rm :\longmapsto\:\dfrac{dy}{dx} = 1 + \dfrac{x}{\sqrt{ {x}^{2}  - 1} }

Hence,

 \red{\rm :\longmapsto\:\boxed{\tt{ \dfrac{dy}{dx} = 1 + \dfrac{x}{\sqrt{ {x}^{2}  - 1} }}}}

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Additional Information

\begin{gathered}\boxed{\begin{array}{c|c} \bf f(x) & \bf \dfrac{d}{dx}f(x) \\ \\  \frac{\qquad \qquad}{} & \frac{\qquad \qquad}{} \\ \sf k & \sf 0 \\ \\ \sf sinx & \sf cosx \\ \\ \sf cosx & \sf  -  \: sinx \\ \\ \sf tanx & \sf  {sec}^{2}x \\ \\ \sf cox & \sf  -  {cosec}^{2}x \\ \\ \sf secx & \sf secx \: tanx\\ \\ \sf cosecx & \sf  -  \: cosecx \: cotx\\ \\ \sf  \sqrt{x}  & \sf  \dfrac{1}{2 \sqrt{x} } \\ \\ \sf logx & \sf \dfrac{1}{x}\\ \\ \sf  {e}^{x}  & \sf  {e}^{x}  \end{array}} \\ \end{gathered}

Similar questions