Math, asked by palsabita1957, 2 months ago

Find dy/dx when y = √ x - 1/√ x
▪ wanted answer with step - by - step
▪ no unwanted answers please _/\_

Answers

Answered by sabitapal
4

\underline{\huge\sf\purple{Question}}

Find dy/dx when y = √ x - 1/√ x

\underline{\huge\sf\purple{Answer}}

\bold{= \frac{1}{2\sqrt{x} }( \frac{1+x}{x}) }

\underline{\huge\sf\red{Solution}}

\bold{\frac{dy}{dx} } = \sf{ \frac{d}{dx} ( \sqrt{x}  - \frac{1}{\sqrt{x} } )}

\sf{ = \frac{d}{dx} (\sqrt{x} ) - \frac{d}{dx} ( \frac{1}{\sqrt{x} }) }

\sf{ = \frac{d}{dx} (x)^{\frac{1}{2}} - \frac{d}{dx} (x)^{-\frac{1}{2}} }

\sf{ = \frac{1}{2} \times x^{\frac{1}{2} -1}  - [ -\frac{1}{2} \times x^{-\frac{1}{2} - 1 } ] }\\

\sf{=\frac{x^{\frac{1}{2} -1}}{2} + \frac{x^{-\frac{1}{2} - 1}}{2} }

\sf{ = \frac{x^{\frac{1 - 2 }{2}}}{2} + \frac{x^{\frac{-1-2}{2}}}{2} }

\sf{ = \frac{x^{\frac{-1}{2}}}{2} + \frac{x^{\frac{-3}{2}}}{2} }

\sf{ = \frac{\frac{1}{\sqrt{x} }}{2} + \frac{\frac{1}{_{3}\sqrt{x} }}{2} }

\sf{ = \frac{1}{2\sqrt{x} } + \frac{1}{2 \ _{3}\sqrt{x} } }

\sf{ = \frac{1}{2\sqrt{x} } ( 1 + \frac{1}{x} ) }

\sf{= \frac{1}{2\sqrt{x} }( \frac{1+x}{x}) }

\huge\sf\red{\colorbox{orange}{= \frac{1}{2\sqrt{x} }( \frac{1+x}{x}) }}

Similar questions