Math, asked by ayusushi, 1 year ago

find dy/dx, when y= x cube. sin(2x) by using chain rule

Answers

Answered by Explode
2

Hope it will help you .
Attachments:
Answered by rakeshmohata
4
Hope u like my process
======================
Formula to be used
------------------------------
d(uv) /dx = udv/dx + vdu/dx

d(sin2x) /dx = 2.cos2x

________________

y = x³. sin(2x)

Differentiating both sides by x
----------------------------------------------
 \frac{dy}{dx}  =   {x}^{3} \times  \frac{d( \sin(2x) )}{dx}  +  \sin(2x)  \times  \frac{d( {x}^{3}) }{dx}  \\  \\  or. \:  \frac{dy}{dx}  =  {x}^{3}  \times 2 \cos(2x)  +  \sin(2x)  \times 3 {x}^{2}  \\ \\   = 2 {x}^{3}  \cos(2x)  + 3 {x}^{2}  \sin(2x)
_-_-_-_-_-_-_-_-_-_-_-_-_-_-_
Hope this is ur required answer

Proud to help you
Similar questions