Math, asked by Abhiramalayil4625, 8 months ago

Find dy/dx when y= x raise to power 1/x

Answers

Answered by shivanidhadwal2000
1

Mark me as brainliest!

Attachments:
Answered by vaishu775
3

▪ Given :-

\large \bf{y = {x}^{1/x }}

▪ To Find :-

\purple{ \bf\large \dfrac{dy}{dx} }

▪ Solution :-

We Have ,

\large \mathtt{y = x {}^{1/x} }

\begin{gathered} \large \bigstar \: \underline{ \pmb{ \mathfrak{ \text{T}a \text king \: \: \text Log \: \: Both \: \: \text Side \: \: }}} : - \\ \end{gathered}

\begin{gathered} : \longmapsto \sf \log y = \log { \mathtt x}^{1/ \mathtt x} \\ \\ : \longmapsto \sf \log y = \frac{1}{ \mathtt x} \log \mathtt x \\ \bf \: \: \: \: \: \: \: \: \: \: \: \: \{ \because log {m}^{n} = n. log m \}\end{gathered}

\large \bigstar \: \underline{ \pmb{ \mathfrak{ Differentiating \: both \: sides \: \text{w.r.t x} }}}

\begin{gathered}: \longmapsto \sf\dfrac{1}{y} . \dfrac{dy}{d \mathtt x} = \frac{1}{ \mathtt x} . \frac{d}{d\mathtt x} ( \log \mathtt x)+ \log \mathtt x. \frac{d}{d\mathtt x} (x {}^{ -1} ) \\ \bf \: \: \: \: \: \: \: \: \: \: \: \: \{ \because Product\:\:Rule \}\\ \\ : \longmapsto \sf \frac{1}{y} . \frac{dy}{d\mathtt x} = \frac{1}{\mathtt x} . \frac{1}{\mathtt x} + \log \mathtt x. \bigg( - \frac{ 1}{ {\mathtt x}^{2} } \bigg ) \\ \\ : \longmapsto \sf \frac{1}{y} . \frac{dy}{d\mathtt x} = \frac{1}{ {\ x}^{2} } - \frac{ \log\mathtt x}{ {\mathtt x}^{2} } \\ \\ : \longmapsto \sf \frac{dy}{d\mathtt x} = y \bigg( \frac{1 - \log\mathtt x}{ {\mathtt x}^{2} } \bigg) \\ \\ \large\blue{ : \longmapsto \pmb{ \underline {\boxed{{ \frac{dy}{dx} = \frac{x {}^{1/x} }{ {x}^{2} } \bigg( 1 - \log x\bigg)} }}}}\end{gathered}

Similar questions