Math, asked by MyselfAbhi, 1 year ago

Find dy/dx when y = x^sinx + tanx^cotx

Answers

Answered by Anonymous
19

Step-by-step explanation:

y =  {x}^{ \sin(x) }  +  { \tan(x) }^{ \cot(x) }

◾taking log on both sides

 log(y)  = log(  {x}^{sinx}  +  {tanx}^{cotx} )

logy = (log \:  {x}^{sinx}  + log {tanx}^{cotx} )

logy = (sinx  \: logx + cotx \: log(tanx))

◾Differentiate wrt X

 \frac{1}{y}  \frac{dy}{dx}  =  \frac{d}{dx} (sinx \: logx \:   + cotx.log(tanx))

 = //((sinx \frac{1}{x}  + logx(cosx)) + (cotx \times  \frac{1}{tanx}  </p><p>\times  {sec}^{2} x+logtanx\times (-cosec^2x))

 = //( \frac{sinx}{x}  + logx(cosx) </p><p>+  \frac{cot \times  {sec}^{2}x }{tanx} +logtanx\times (-cosec^2x)

 = //y( \frac{sin}{x}  + logx(cosx)</p><p> +  \frac{cotx \times  {sec}^{2} x}{tanx}+logtanx\times (-cosec^2x) )

\frac{dy}{dx}=//{x}^{ \sin(x) }  +  { \tan(x) }^{ \cot(x) }(( \frac{sin}{x}  + logx(cosx) +  \frac{cotx \times  {sec}^{2} x}{tanx}+logtanx\times (-cosec^2x) )

Answered by sandy1816
2

Your answer attached in the photo

Attachments:
Similar questions