Math, asked by svjeronsamvel123, 4 months ago

Find dy/dx when ysinx=xcosy

Answers

Answered by AbdulHafeezAhmed
3

Your answer is in the attachment

Attachments:
Answered by hukam0685
2

 \bf \: \frac{dy}{dx}  =  \frac{cos \: y -y \: cos \: x}{sin \: x + x \: sin \: y}  \\

Given:

  • y \:  sin \: x= x \: cos \: y \\

To find:

  • Find  \frac{dy}{dx}  \\

Solution:

Concept to be used:

  • Apply chain rule.

Step 1:

Do differentiation with respect to x .

Remember that it is implicit differentiation.

y\frac{d}{dx}(sin \: x) + sin \: x \:  \frac{dy}{dx}  =x\frac{d}{dx}(cos\: y) + cos \: y\:  \frac{dx}{dx}  \\

y \: cos \: x + sin \: x \:  \frac{dy}{dx} =  - x \: sin \: y \:   \frac{dy}{dx} + cos \: y \\

Step 2:

Simply the equation.

Take the terms containing dy/dx to LHS.

sin \: x \:  \frac{dy}{dx}  +  x \: sin \: y \: \frac{dy}{dx}  =  cos \: y -  y \: cos \: x   \\

(sin \: x + x \: sin \: y) \:  \frac{dy}{dx}   =  cos \: y -  y \: cos \: x   \\

 \frac{dy}{dx}  =  \frac{cos \: y - y \: cos \: x}{sin \: x + x \: sin \: y}  \\

Thus,

 \bf \: \frac{dy}{dx}  =  \frac{cos \: y - y \: cos \: x}{sin \: x + x \: sin \: y}  \\

Learn more:

1) y=e^√cotx find dy/dx

https://brainly.in/question/2207821

2) If x=acost and y=bsint then find d2y/dx2

https://brainly.in/question/5027239

#SPJ2

Similar questions