Math, asked by mauhammednihal, 1 month ago

find dy/dx where y=4x^5-6x^3+12​

Answers

Answered by gsid87
1

Answer:

y=4x^5-6x^3+12

find dy/dx

answer 20x^4-18x^2

Answered by ZaraAntisera
0

Step-by-step explanation:

\mathrm{Domain\:of\:}\:\frac{4x^5-6x^3+12}{x}\::\quad \begin{bmatrix}\mathrm{Solution:}\:&\:x<0\quad \mathrm{or}\quad \:x>0\:\\ \:\mathrm{Interval\:Notation:}&\:\left(-\infty \:,\:0\right)\cup \left(0,\:\infty \:\right)\end{bmatrix}

\mathrm{Range\:of\:}\frac{4x^5-6x^3+12}{x}:\quad \begin{bmatrix}\mathrm{Solution:}\:&\:-\infty \:<f\left(x\right)<\infty \\ \:\mathrm{Interval\:Notation:}&\:\left(-\infty \:,\:\infty \:\right)\end{bmatrix}

\mathrm{Suppose\:that\:}x=c\mathrm{\:is\:a\:critical\:point\:of\:}f\left(x\right)\mathrm{\:then,\:}

\mathrm{If\:}f\:'\left(x\right)>0\mathrm{\:to\:the\:left\:of\:}x=c\mathrm{\:and\:}f\:'\left(x\right)<0\mathrm{\:to\:the\:right\:of\:}x=c\mathrm{\:then\:}x=c\mathrm{\:is\:a\:local\:maximum.}

\mathrm{If\:}f\:'\left(x\right)<0\mathrm{\:to\:the\:left\:of\:}x=c\mathrm{\:and\:}f\:'\left(x\right)>\:0\mathrm{\:to\:the\:right\:of\:}x=c\mathrm{\:then\:}x=c\mathrm{\:is\:a\:local\:minimum.}

\mathrm{If\:}f\:'\left(x\right)\mathrm{\:is\:the\:same\:sign\:on\:both\:sides\:of\:}x=c\mathrm{\:then\:}

x=c\mathrm{\:is\:neither\:a\:local\:maximum\:nor\:a\:local\:minimum.}

\mathrm{The\ function\ monotone\ intervals\ are:}

-\infty \:<x<0,\:0<x<1.12804\dots ,\:1.12804\dots <x<\infty \:

\mathrm{Plug\:the\:extreme\:point}\:x=1.12804\dots \:\mathrm{into}\:\frac{4x^5-6x^3+12}{x}\quad \Rightarrow \quad \:y=9.47983\dots

\mathrm{Minimum}\left(1.12804\dots ,\:9.47983\dots \right)

\mathrm{Combine\:the\:ranges\:of\:all\:domain\:intervals\:to\:obtain\:the\:function\:range}\:

-\infty \:<f\left(x\right)<\infty \quad \mathrm{or}\quad \:f\left(x\right)\ge \:9.47983\dots

-\infty \:<f\left(x\right)<\infty

Similar questions