Math, asked by situ2309, 7 months ago

find dy/dx : x√1+x³ at X =2​

Answers

Answered by senboni123456
1

Step-by-step explanation:

We have,

y = x \sqrt{1 +  {x}^{3} }

 =  >  \frac{dy}{dx}  =  \sqrt{1 +  {x}^{3} }. \frac{d}{dx}  (x) + x. \frac{d}{dx} ( \sqrt{1 +  {x}^{3} }) \\

 =  >  \frac{dy}{dx}  =  \sqrt{1 +  {x}^{3} }  + x. \frac{3 {x}^{2} }{2 \sqrt{1 +  {x}^{3} } }  \\

 =  > ( \frac{dy}{dx}) _{x = 2} =  \sqrt{1 +  {2}^{3} }  +  \frac{3(2)^{3} }{2 \sqrt{1 +  {2}^{3} } }  \\

 =  > ( \frac{dy}{dx}) _{x = 2} =  \sqrt{1 +  8 }  +  \frac{3 \times 8 }{2 \sqrt{9 } }  \\

 =  > ( \frac{dy}{dx}) _{x = 2} = 3 +  \frac{3 \times 8}{2 \times 3}  \\

 =  > ( \frac{dy}{dx}) _{x = 2} = 7 \\

Similar questions