Physics, asked by anushkarathour1111, 8 months ago

find dy/dx y=5x^4 + 3x^3/2 +6x

Answers

Answered by jagatpaljagat3844
24

Answer:

hope you got your answer

Attachments:
Answered by anurimasingh22
1

Answer:

\frac{dy}{dx}= 20x^{3} +\frac{9}{2}\sqrt{x}   + 6

Explanation:

Given:

y=5x^{4} + 3x^{ \frac{3}{2} } +6x

Find:

\frac{dy}{dx} = \ ?

Solution:

\frac{dy}{dx} = \frac{d}{dx}(5x^{4} + 3x^{\frac{3}{2} } + 6x)

\frac{dy}{dx} = \frac{d}{dx}(5x^{4}) +  \frac{d}{dx}(3x^{\frac{3}{2} }) + \frac{d}{dx}(6x)

\frac{dy}{dx}= 5 \times \frac{d}{dx}(x^{4}) + 3 \times \frac{d}{dx}(x^{\frac{3}{2} }) + 6 \times \frac{d}{dx}(x)

\frac{dy}{dx}= 5 \times 4x^{(4-1)} + 3 \times \frac{3}{2}x^{(\frac{3}{2} -1)}  + 6 \times 1x^{(1-1)}

\frac{dy}{dx}= 5 \times 4x^{3} + 3 \times \frac{3}{2}x^{\frac{1}{2}}  + 6 \times 1x^{0}

\frac{dy}{dx}= 20x^{3} +\frac{9}{2}x^{\frac{1}{2}}  + 6 x^{0}

\frac{dy}{dx}= 20x^{3} +\frac{9}{2}\sqrt{x}   + 6

Important derivatives used:

  • \frac{d}{dx}(x^{n}) = nx^{n-1}     where n is a constant
  • \frac{d}{dx}(kx) = k \ \frac{d}{dx}(x)   where k is a constant
  • \frac{d}{dx}(x) = 1

Similar problems to find derivatives:

https://brainly.in/question/9696291

https://brainly.in/question/2250317

Similar questions