Math, asked by jnsakshi1489, 1 year ago

Find dy/dx : y = sec^-1 (1/2x^2-1), 0< x <1/√2

Answers

Answered by Pitymys
0

Let  x=\cos \theta . Use the identity,

 2\cos^2 \theta-1=\cos 2\theta .

Now,

 y=\sec^{-1}(\frac{1}{2\cos^2 \theta-1}) =\sec^{-1}(\frac{1}{\cos 2\theta}) \\<br />y=\sec^{-1}(\sec 2\theta) \\<br />y= 2\theta

Now,

 \frac{dy}{dx}= 2\frac{d \theta  }{dx}\\<br />\frac{dy}{dx}= \frac{2}{\frac{d x }{d\theta }} \\<br />\frac{dy}{dx}= \frac{2}{\frac{d \cos \theta }{d\theta }} \\<br />\frac{dy}{dx}= \frac{2}{-\sin \theta} \\<br />\frac{dy}{dx}= -\frac{2}{\sqrt{1-x^2}}

Similar questions