Math, asked by narwelkardurvesh, 2 months ago

Find dy/dx ;y = (sin^-1x)^x



plz answer this

Answers

Answered by mathdude500
3

\large\underline{\sf{Solution-}}

\rm :\longmapsto\:y =  {( {sin}^{ - 1} x)}^{x}

On taking log on both sides

\rm :\longmapsto\:logy = log {( {sin}^{ - 1} x)}^{x}

\rm :\longmapsto\:logy = x \: log {( {sin}^{ - 1} x)}

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \red{\bigg \{ \because \: log( {x}^{y} ) = y \: logx  \bigg \}}

On differentiating both sides w. r. t. x, we get

\rm :\longmapsto\:\dfrac{d}{dx} \: logy = \dfrac{d}{dx} \: x \: log {( {sin}^{ - 1} x)}

We know,

\red{\rm :\longmapsto\:\dfrac{d}{dx} log(x) =  \dfrac{1}{x}}

\red{\rm :\longmapsto\:\dfrac{d}{dx} u.v = u \dfrac{d}{dx}v \:  +  \: v\dfrac{d}{dx}u}

Using these Identities, we get

\rm :\longmapsto\:\dfrac{1}{y}\dfrac{dy}{dx} = x \: \dfrac{d}{dx}log( {sin}^{ - 1}x) + log( {sin}^{ - 1}x)\dfrac{d}{dx}x

\rm :\longmapsto\:\dfrac{1}{y}\dfrac{dy}{dx} = x \:\dfrac{1}{ {sin}^{ - 1} x}\dfrac{d}{dx}( {sin}^{ - 1}x) + log( {sin}^{ - 1}x)

We know,

\red{\rm :\longmapsto\:\dfrac{d}{dx}x = 1}

\red{\rm :\longmapsto\:\dfrac{d}{dx} {sin}^{ - 1}x  = \dfrac{1}{ \sqrt{1 -  {x}^{2} } } }

Using all, we get now

\rm :\longmapsto\:\dfrac{1}{y}\dfrac{dy}{dx} = \dfrac{x}{ {sin}^{ - 1} x} \times \dfrac{1}{ \sqrt{1 -  {x}^{2} } } + log( {sin}^{ - 1}x)

\rm :\longmapsto\:\dfrac{dy}{dx} = y\bigg(\dfrac{x}{ {sin}^{ - 1}x \:  \sqrt{1 -  {x}^{2} } }  + log( {sin}^{ - 1}x)\bigg)

\rm :\longmapsto\:\dfrac{dy}{dx} =  {( {sin}^{ - 1} x)}^{x} \bigg(\dfrac{x}{ {sin}^{ - 1}x \:  \sqrt{1 -  {x}^{2} } }  + log( {sin}^{ - 1}x)\bigg)

Shortcut

\rm :\longmapsto\:\dfrac{d}{dx} {f}^{g}

where f and g both are function of x or either function of x or y.

 \rm \:  \:  =  \:  {f}^{g}\bigg(\dfrac{g}{f} \dfrac{d}{dx}f \:  +  \: logf \: \dfrac{d}{dx}g\bigg)

For example,

\rm :\longmapsto\:\dfrac{d}{dx} {x}^{x}

 \rm \:  \:  =  \:  {x}^{x}\bigg(\dfrac{x}{x} \dfrac{d}{dx}x +  log(x)\dfrac{d}{dx}x \bigg)

 \rm \:  \:  =  \:  {x}^{x}(1 + logx)

Similar questions