Math, asked by subhranshupattanayak, 3 days ago

find dy/dx

y=tan xy???????​

Answers

Answered by Mathkeeper
1

Step-by-step explanation:

We have,

y =  \tan(xy)

Differentiating both sides w. r. t x, we get,

 \frac{dy}{dx} =  \sec^{2} (xy). \frac{d}{dx}  (xy) \\

 \implies \frac{dy}{dx} =  \sec^{2} (xy). \bigg \{y \frac{d}{dx}  (x) + x \frac{d}{dx}  (y)\bigg  \} \\

 \implies \frac{dy}{dx} =  \sec^{2} (xy). \bigg \{y+ x \frac{dy}{dx}\bigg  \} \\

 \implies \frac{dy}{dx} =  y\sec^{2} (xy) +  x \sec^{2} (xy)  \frac{dy}{dx}\\

 \implies \frac{dy}{dx}  -   x \sec^{2} (xy)  \frac{dy}{dx} =  y\sec^{2} (xy)  \\

 \implies \bigg \{1-   x \sec^{2} (xy)  \bigg \} \frac{dy}{dx} =  y\sec^{2} (xy)  \\

 \implies \frac{dy}{dx} =   \frac{y\sec^{2} (xy) }{ 1-   x \sec^{2} (xy) } \\

Similar questions