Math, asked by shravninake, 2 months ago

find dy/dx. y =x power 3-3cosx+2tanx​

Answers

Answered by MrImpeccable
9

ANSWER:

Given:

  • y = x³ - 3cosx + 2tanx

To Find:

  • dy/dx

Solution:

We are given that,

:\implies y=x^3-3\cos x+2\tan x

Multiplying both sides by (d/dx),

:\implies\dfrac{dy}{dx}=\dfrac{d}{dx}(x^3-3\cos x+2\tan x)

So,

:\implies\dfrac{dy}{dx}=\dfrac{d}{dx}(x^3)-\dfrac{d}{dx}(3\cos x)+\dfrac{d}{dx}(2\tan x)

We know that,

:\hookrightarrow\dfrac{d}{dx}x^n=nx^{n-1},

:\hookrightarrow\dfrac{d}{dx}ax=a\dfrac{d}{dx}(x)\:\:(\text{a is constant})

So,

:\implies\dfrac{dy}{dx}=\dfrac{d}{dx}(x^3)-\dfrac{d}{dx}(3\cos x)+\dfrac{d}{dx}(2\tan x)

Hence,

:\implies\dfrac{dy}{dx}=3x^{3-1}-3\dfrac{d}{dx}(\cos x)+2\dfrac{d}{dx}(\tan x)

:\implies\dfrac{dy}{dx}=3x^2-3\dfrac{d}{dx}(\cos x)+2\dfrac{d}{dx}(\tan x)

We know that,

:\hookrightarrow\dfrac{d}{dx}\cos x=-\sin x,

:\hookrightarrow\dfrac{d}{dx}\tan x=\sec^2x

So,

:\implies\dfrac{dy}{dx}=3x^2-3\dfrac{d}{dx}(\cos x)+2\dfrac{d}{dx}(\tan x)

Hence,

:\implies\dfrac{dy}{dx}=3x^2-3(-\sin x)+2(\sec^2x)

So,

:\implies\bf\dfrac{dy}{dx}=3x^2+3sin x+2sec^2x

Formulae Used:

\:\:\:\bullet\:\:\:\dfrac{d}{dx}x^n=nx^{n-1},

\:\:\:\bullet\:\:\:\dfrac{d}{dx}ax=a\dfrac{d}{dx}(x)\:\:(\text{a is constant})

\:\:\:\bullet\:\:\:\dfrac{d}{dx}\cos x=-\sin x,

\:\:\:\bullet\:\:\:\dfrac{d}{dx}\tan x=\sec^2x

Similar questions