Math, asked by shaguftaniamat, 5 months ago

find dy/dx, y=x²e²^x(x²+1)⁴​

Answers

Answered by ajitbag040
0

Answer:

uagaya

uagayyja

usteal

iph Al

mna

Ni

Answered by Tulsi4890
0

Given:

y = x²e²^x(x²+1)⁴​

To find:

dy/dx

solution:

we can solve this by differentiating y with respect to x:

on differentiating we get,

\frac{dy}{dx}=\frac{d}{dx} (x^{2} *e^{2} ^{x(x^{2}+1)^{4} } )

    =e^{2x(x^{2} +1)^{4} }x^{2} ( 16x^{2} (x^{2} +1)^{3} +2(x^{2} +1)^{4} )+2e^{2x(x^{2} +1)^{4} } x

\frac{dy}{dx} =e^{2x(x^{2} +1)^{4} }x^{2} ( 16x^{2} (x^{2} +1)^{3} +2(x^{2} +1)^{4} )+2e^{2x(x^{2} +1)^{4} } x

Hence found

Similar questions