Math, asked by wwwmanassencho1129, 1 year ago

Find eccentricity foci latus rectum of x^2+4y^2+8y-2x+1=0

Answers

Answered by 434Shubham
0
here is the answer for ur questions
Attachments:
Answered by BrainlyConqueror0901
2

\blue{\bold{\underline{\underline{Answer:}}}}

\green{\tt{\therefore{Eccentricity=\frac{\sqrt{3}}{2}}}}\\

\green{\tt{\therefore{Foci=(\pm\sqrt{3},0)}}}\\

\green{\tt{\therefore{Latus\:rectum(LL')=1\:units}}}

\orange{\bold{\underline{\underline{Step-by-step\:explanation:}}}}

 \green {\underline \bold{Given : }} \\   \tt{ : \implies Eqn \: of \: ellipse =  x^{2}+4y^{2}+8y-2x+1=0 = 1} \\  \\ \red {\underline \bold{To \: Find: }}\\   \tt{:\implies Eccentricity(e)=?}\\\\ \tt{:\implies Foci=?}\\ \\ \tt {: \implies Length \: of \: latus \: rectum (LL')=?}

• According to given question :

 \tt {:  \implies  {x}^{2}  +  {4y}^{2}  + 8y - 2x + 1 = 0} \\  \\  \tt{: \implies  {x}^{2}  - 2x + 1 - 1 + 4 {y}^{2}  + 8y  + 4 -4+ 1 = 0} \\  \\  \tt{:  \implies (x - 1)^{2}  +( 2y  + 2)^{2}   = 4} \\  \\ \tt{ :\implies  \frac{(x - 1)^{2} }{4}  +  \frac{(y + 1) ^{2} }{ \frac{4}{4} }  = 1 } \\  \\   {: \implies  \frac{ {(x - 1)}^{2} }{4}  +  \frac{ {(y + 1)}^{2} }{1}  = 1} \\  \\

 \text{So, \: it \: is \: in \: the \: form \: of}  \\  \tt{\to  \frac{ {x}^{2} }{ {a}^{2} }   +   \frac{ {y}^{2} }{ {b}^{2} } = 1}  \\  \\  \bold{Where : } \\   \tt{\circ  \:  {a}^{2}  =  4} \\   \\   \tt{\circ \:  {b}^{2}  = 1} \\\\ \tt{\circ\: a > b}

  \bold{As \: we \: know \: that} \\  \tt{ :   \implies  {b}^{2}   =  {a}^{2}(1 -  {e}^{2}  )} \\  \\   \tt{: \implies1 = 4(1 -  {e}^{2} )} \\   \\   \tt{: \implies  {e}^{2}  = 1 -  \frac{1}{4} } \\  \\   \tt{: \implies  {e}^{2}  =  \frac{3}{4} } \\  \\    \green{\tt{: \implies e =  \frac{ \sqrt{3} }{2} }}\\   \\   \bold{As \: we \: know \: that} \\   \tt{: \implies foci = ( \pm ae,0)} \\  \\   \green{\tt{: \implies Foci= (\pm  \sqrt{3}, 0)}} \\  \\

 \bold{As \: we \: know \: that}  \\    \tt{ :  \implies Latus \: rectum =  \frac{2 {b}^{2}  }{a} } \\   \\  \text{Putting \: given \: values} \\ \tt{ :  \implies Latus \: rectum =  \frac{2 \times 1 }{2} } \\  \\  \green{\tt{ :  \implies Latus \: rectum =  1\:units}}

Similar questions