Math, asked by nishantkumar530, 9 months ago

Find ecentricity of an ellipse whose latus rectum is 12.​

Answers

Answered by srijansarvshresth123
1

Answer:

12=2a(1-e^2)

6-a/a=-e^2

a-6/a=e^2

e=(a-6/a)^1/2

Answered by BrainlyConqueror0901
1

CORRECT QUESTION :

Find ecentricity of an ellipse whose latus rectum is 12 and the major axis is half of latus rectum

\blue{\bold{\underline{\underline{Answer:}}}}

\green{\tt{\therefore{Eccentricity=\iota}}}

\orange{\bold{\underline{\underline{Step-by-step\:explanation:}}}}

 \green{ \underline \bold{Given: }} \\  \tt{: \implies Latus \: rectum = 12} \\\\ \tt{:\implies Major\:axis=half\:of\:latus\:rectum} \\\\  \red{ \underline \bold{To \: Find: }} \\  \tt{:  \implies Eccentricity =?}

• According to given question :

 \bold{As \: we \: know \: that} \\  \tt{: \implies Latus \: rectum =  \frac{2 {b}^{2} }{a}  } \\  \\  \tt{: \implies 12=  \frac{ {2b}^{2} }{a} } \\   \\  \tt{: \implies  {b}^{2}   = 6a}  -  -  -  -  - (1)\\\\ \bold{As\:we\:know\:that}\\ \tt{:\implies major\:axis=6}\\\\ \tt{:\implies 2a=6}\\\\ \tt{:\implies a=3}\\\\

\bold{As \: we \: know \: that} \\    \tt{: \implies  {b}^{2}  =  {a}^{2}(1 -  {e}^{2} )} \\ \\  \text{Putting \: value \: of }  {b}^{2}   \\  \tt{:  \implies  6a  =  {a}^{2} ( 1 -  {e}^{2} ) }\\  \\ \tt{: \implies 6\times 3 = 9(1 -  {e}^{2})} \\  \\  \tt{:  \implies  1-{e}^{2}   =  2} \\  \\  \tt{:  \implies  e =  \sqrt{-1} } \\  \\    \green{\tt{: \implies e =    \iota}}

Similar questions