Math, asked by nishantkumar530, 10 months ago

Find ecentricity of hyperbola whose transverse axis is half half of its latus rectum.​

Answers

Answered by BrainlyConqueror0901
6

\blue{\bold{\underline{\underline{Answer:}}}}

\green{\tt{\therefore{Eccentricity=\sqrt{3}}}}

\orange{\bold{\underline{\underline{Step-by-step\:explanation:}}}}

 \green{ \underline \bold{Given : }} \\  \tt{:  \implies Transverse \: axis \:  =  half \: of \: {Latus \: rectum} } \\  \\   \red{ \underline \bold{To \: Find: }} \\  \tt{: \implies Eccentricity(e) =?}

• According to given question :

 \tt{: \implies Transverse \: axis  = half \: of \: latus \: rectum} \\  \\  \bold{As \: we \: know \: that} \\   \tt{:  \implies 2a =  \frac{ \frac{2 {b}^{2} }{a} }{2}}  \\  \\  \tt{: \implies 2a =  \frac{2 {b}^{2} }{2a} } \\  \\  \tt{: \implies 2 {a}^{2}  =  {b}^{2} } -  -  -  -  - (1) \\  \\  \bold{As \: we \: know \:that} \\   \tt{: \implies  {b}^{2}  =  {a}^{2} ( {e}^{2}  - 1)} \\   \\  \text{Putting \: value \: of \:  {b}}^{2}\\ \tt{:  \implies  {2a}^{2}  =  {a}^{2} ( {e}^{2}  - 1)} \\  \\ \tt{: \implies 2{a}^{2}  =  {a}^{2} ( {e}^{2}  - 1)} \\  \\  \tt{: \implies  {e}^{2}  - 1 = 2} \\  \\  \tt{:  \implies  {e}^{2}  = 3} \\  \\   \green{\tt{:  \implies e =  \sqrt{3} }}

Similar questions