find eigen values and eigen vectors 1 2 3 2 4 6 3 6 9
Answers
Answer: One eigen value is 0 and corresponding eigen vectors are and other eigen value is 14 and corresponding eigen vector is
Step-by-step explanation:
Let given matrix be named A
Let λ be eigen value of A
∴ det ( A - λI ) = 0
det ( A - λI ) = (1- λ)[(4- λ)(9- λ) - 36] -2[2(9- λ) - 18] + 3[12 - 3(4 - λ)]
0 = (1- λ)[ λ² -13λ ] -2[-2λ] + 3[3λ]
0 = (1- λ)[ λ² -13λ ] + 4λ + 9λ
0 = (1- λ)[ λ² -13λ ] + 13λ
0 = λ(1- λ)[ λ -13 ] + 13λ
0 = λ [ (1 - λ)(λ -13) + 13 ]
0 = λ [ -λ² + 14λ -13 + 13 ]
0 = λ [ -λ² + 14λ ]
0 = λ² [ -λ + 14 ]
λ = 0 , 0, 14
Finding eigen vectors corresponding to λ = 0 :
Av = λv
Av = 0
We get only 1 unique equation. Hence, two parameters out of x y and z are independent.
Choose y and z as independent.
y = r and z =s
x + 2y + 3z = 0
x + 2r + 3s = 0
x = -2r - 3s
Eigen vectors corresponding to λ = 0 are :
Finding eigen vectors corresponding to λ = 14 :
Av = λv
Av = 14v
eq(1)
eq(2)
eq(3)
eq(1) can be written as -(3eq(3) + 2eq(2))
eq(1) = -(3eq(3) + 2eq(2))
We get 2 unique equations. Hence, one parameter is independent.
Choose z as independent.
z = s
2x - 10y + 6z = 0
2x - 10y + 6s = 0
x - 5y = - 3s eq(i)
3x + 6y - 5z = 0
3x + 6y = 5s
x + 2y = 5s/3 eq(ii)
eq(ii) - eq(i)
7y = 14s/3
y = 2s/3
x = 5y - 3s
x = 10s/3 - 3s
x = s/3
Eigen vectors corresponding to λ = 14 is :
#SPJ3