find eigenvalue and corresponding eigenvectors of the matrix A=[2 0 0][0 3 4][0 -4 -9]
Answers
Answer:
:
Eigenvector (X) that corresponding to Eigenvalue (λ) satisfies the equation AX = λX.
Determining eigenvalues first by characteristic Equation
Given matrix A = [2−2 −16]
The characteristic equation for the given matrix is
|A - λI| = 0
λ λ
M=|2−λ−2−16−λ|=0
⇒ (2 - λ) × (6 - λ) - (-2)(-1) = 0
⇒ 12 - 2 λ - 6 λ + λ2 - 2 = 0
⇒ λ2 - 8λ + 10 = 0
λ
λ=−8±√64−402=−8±√242=4±√6
⇒ λ = 4 + √6 , 4 - √6
∴ Eigen values are 4 + √6 & 4 - √6
Smallest Eigen Value = 4 - √6 = 1.55
Now Determining Eigenvectors corresponding to the eigenvalue λ = 1.55.
For λ = 1.55 The corresponding Eigenvector is
[2−1.55−2−16−1.55][x1x2]=[00]
[0.45−2−14.45][x1x2]=[00]
0.45 x1 - 2 x2 = 0 -- (1)
-x1 + 4.45 x2 = 0 -- (2)
Solving (1) and (2) we get.
x1 = 2 & x2 = 0.45
∴ The eigenvector corresponding to 1.55 is [20.45]
Download Soln PD