Find equation of a circle with centre (a cos alpha, a sin alpha) and radius a.
Answers
Answered by
3
( x- a^2 cos^2alpha) + ( y - a^2 sin^2,alpha) = a^2
Answered by
8
Answer:
x²+y²-2ax cos Alpha -2ay sin alpha =0
Step-by-step explanation:
(x-a cos Alpha)² + (y-a sin alpha) =0
x²+a²cos alpha -2ax cos Alpha +y²+a² sin alpha -2ay sin alpha ² =a²
x²+y²-2ax cos Alpha -2ay sin alpha +a²( cos alpha+ sin alpha) =a²
x²+y²-2ax cos Alpha -2ay sin alpha +a²(1) =a²
x²+y²-2ax cos alpha-2ay sin alpha =0. [when r.h.s side a² come to L.H.S side both will be cancelled]
so. x²+y²-2ax cos alpha-2ay sin alpha =0
Similar questions