Math, asked by vishu99, 1 year ago

find equation of ellipse reffered to its curve whose latus rectum is 5 and eccentricity is 2/3

Answers

Answered by kartik191
3
hope it will help u out......
Attachments:

vishu99: thnks
kartik191: :-)
Answered by BrainlyConqueror0901
2

\blue{\bold{\underline{\underline{Answer:}}}}

\green{\tt{\therefore{Eqn\:of\:ellipse=\frac{x^{2}}{20.25}+\frac{y^{2}}{11.25}=1}}}\\

\orange{\bold{\underline{\underline{Step-by-step\:explanation:}}}}

 \green{ \underline \bold{Given : }} \\  \tt{ :  \implies  Eccentricity = \frac{2}{3}} \\  \\   \tt{ : \implies Length\:of\:latus\:rectum= 5} \\  \\ \red{ \underline \bold{To \: Find : }}  \\   \tt{ : \implies  Eqn \:of \: hyperbola = ?}

• According to given question :

  \circ \: \tt{Let \: eqn   \: be \:   \frac{ {x}^{2} }{ {a}^{2} }  +  \frac{ {y}^{2} }{ {b}^{2} }  = 1} -  -  -  -  - (1) \\  \\ \bold{As\:we\:know\:that}\\ \tt{:\implies Length\:of\:latus\:rectum=\frac{2b^{2}}{a}}\\\\ \tt{:\implies 5=\frac{2b^{2}}{a}}\\\\ \tt{:\implies b^{2}=\frac{5a}{2}-----(2)}\\\\  \bold{As \: we \: know \: that} \\   \tt{ : \implies  {b}^{2}  =  {a}^{2} (1- {e}^{2})} \\  \\   \tt{:  \implies  \frac{5a}{2} =  a^{2} (1-(\frac{2}{3})^{2})} \\  \\ \tt{ : \implies   \frac{5}{2a} = \frac{5}{9} }\\\\ \green{\tt{:\implies a=4.5}}

 \text{putting \: value \: of \: a \: in \: (2)} \\  \tt{:  \implies  {b}^{2} =   \frac{5 \times 4.5}{2} } \\  \\  \tt{:  \implies  {b}^{2}  = 11.25} \\  \\  \text{putting \: value \: of \: a \: and \: b \: in \: (1)} \\  \tt{ :  \implies   \frac{ {x}^{2} }{20.25}  +  \frac{ {y}^{2} }{11.25}  = 1} \\   \\    \green{\tt{\therefore Eqn \: of \: ellipse \: is \:  \frac{ {x}^{2} }{20.25}  +  \frac{ {y}^{2} }{11.25}  = 1}}

Similar questions