Math, asked by sindhusharavuri, 1 year ago

find equation of hyperbola given foci (0,+_ROOT 10) passing through (2,3)

Answers

Answered by MaheswariS
56

Answer:


Step-by-step explanation:

Given:{F_1}(0,\sqrt{10}), {F_2}(0,-\sqrt{10})\\Distance between foci,{F_1}{F_2}=2\sqrt{10}\\2ae=2\sqrt{10}\\ae=\sqrt{10}


b^2=a^2(e^2-1)\\b^2=(ae)^2-a^2\\b^2=10-a^2


we know that centre C is the midpoint of foci

Then clearly C(0,0)

since the transverse axis is along y-axis,

the equation of the hyperbola is

\frac{y^2}{a^2}-\frac{x^2}{b^2}=1\\\\\frac{y^2}{a^2}-\frac{x^2}{10-a^2}=1

since it passes through(2,3)

\frac{9}{a^2}-\frac{4}{10-a^2}=1\\\\\frac{9(10-a^2)-4a^2)}{a^2(10-a^2)}=1

90-13a^2=10a^2-a^4\\a^4-23a^2+90=0\\(a^-5)(a^2-18)=0\\a^2=5,18

when\:a^2=18, b^2=10-18=-8\\which\:is\:impossible\\\\ when\:a^2=5,\:b^2=5

Therefore the equation of the hyperbola is

\frac{y^2}{5}-\frac{x^2}{5}=1\\\\y^2-x^2=5

Answered by IINaginII
1

Answer:

Step-by-step explanation:

\begin{gathered}Given:{F_1}(0,\sqrt{10}), {F_2}(0,-\sqrt{10})\\Distance between foci,{F_1}{F_2}=2\sqrt{10}\\2ae=2\sqrt{10}\\ae=\sqrt{10}\end{gathered}

Given:F

1

(0,

10

),F

2

(0,−

10

)

Distancebetweenfoci,F

1

F

2

=2

10

2ae=2

10

ae=

10

\begin{gathered}b^2=a^2(e^2-1)\\b^2=(ae)^2-a^2\\b^2=10-a^2\end{gathered}

b

2

=a

2

(e

2

−1)

b

2

=(ae)

2

−a

2

b

2

=10−a

2

we know that centre C is the midpoint of foci

Then clearly C(0,0)

since the transverse axis is along y-axis,

the equation of the hyperbola is

\begin{gathered}\frac{y^2}{a^2}-\frac{x^2}{b^2}=1\\\\\frac{y^2}{a^2}-\frac{x^2}{10-a^2}=1\end{gathered}

a

2

y

2

b

2

x

2

=1

a

2

y

2

10−a

2

x

2

=1

since it passes through(2,3)

\begin{gathered}\frac{9}{a^2}-\frac{4}{10-a^2}=1\\\\\frac{9(10-a^2)-4a^2)}{a^2(10-a^2)}=1\end{gathered}

a

2

9

10−a

2

4

=1

a

2

(10−a

2

)

9(10−a

2

)−4a

2

)

=1

\begin{gathered}90-13a^2=10a^2-a^4\\a^4-23a^2+90=0\\(a^-5)(a^2-18)=0\\a^2=5,18\end{gathered}

90−13a

2

=10a

2

−a

4

a

4

−23a

2

+90=0

(a

5)(a

2

−18)=0

a

2

=5,18

\begin{gathered}when\:a^2=18, b^2=10-18=-8\\which\:is\:impossible\\\\ when\:a^2=5,\:b^2=5\end{gathered}

whena

2

=18,b

2

=10−18=−8

whichisimpossible

whena

2

=5,b

2

=5

Therefore the equation of the hyperbola is

\begin{gathered}\frac{y^2}{5}-\frac{x^2}{5}=1\\\\y^2-x^2=5\end{gathered}

5

y

2

5

x

2

=1

y

2

−x

2

=5

Similar questions