Math, asked by santhoshvarma6966, 1 year ago

Find equation of line Passing through points (a cos alpha,a sin alpha) and ( a cis bita,a sin beta)

Answers

Answered by HappiestWriter012
10

The equation of line is,

 \large{\cot(\frac{ \alpha  +  \beta }{2})) x + y - asin \alpha   - acos \alpha ( \cot( \frac{ \alpha  +  \beta }{2})) = 0 \: }

Given points :

( a cosα, a sinα), ( a cosβ, a sinβ)

The equation of line passing through,

( x₁, y₁), (x₂, y₂) is,

y - y₁ = m ( x - x₁)

Here, m = (y₂ - y₁) ÷ (x₂ - x₁)

So for the given points, Let's find the slope m.

m =  \dfrac{ a \sin( \beta ) - a \sin( \alpha )  }{a \cos(  \beta ) - a \cos( \alpha )  }  \\  \\ m =  \dfrac{ a (\sin( \beta ) -  \sin( \alpha ))  }{a( \cos(  \beta ) -  \cos( \alpha ) ) }  \\  \\ m =  \dfrac{  \sin( \beta ) -  \sin( \alpha )  }{ \cos(  \beta ) -  \cos( \alpha )  }  \\  \\ m \:  =  \frac{2 \cos( \frac{ \alpha  +  \beta }{2}) . \sin(\frac{ \alpha   -  \beta }{2}) }{ - 2 \sin( \frac{ \alpha  +  \beta }{2}) . \sin(\frac{ \alpha   -  \beta }{2})}  \\  \\ m  =  -  \cot (\frac{ \alpha  +  \beta }{2})

Now, The equation of line joining the points is,

y - a \sin( \alpha )  =  -  \cot(\frac{ \alpha  +  \beta }{2}))(x - a \cos( \alpha )   \\  \\  \cot(\frac{ \alpha  +  \beta }{2})) x + y - asin \alpha   - acos \alpha ( \cot( \frac{ \alpha  +  \beta }{2})) = 0

Answered by pulakmath007
21

\displaystyle\huge\red{\underline{\underline{Solution}}}

FORMULA TO BE IMPLEMENTED

The equation of any line passing through the points

(x_1, y_1)  \:  \: and \:  \: (x_2, y_2)  \:  \: is \:

  \sf{\displaystyle \:  \frac{y - y_1  }{x -x_1 }  =  \frac{y_2 -  y_1}{x_2 -  x_1}}

TO DETERMINE

The equation of the line passing through the points

 \sf{(a \cos  \alpha  \:  , \: a \sin \alpha ) \:  \: and \:  \: (a \cos   \beta   \:  , \: a \sin  \beta  )}

CALCULATION

The equation of the line passing through the points

 \sf{(a \cos  \alpha  \:  , \: a \sin \alpha ) \:  \: and \:  \: (a \cos   \beta   \:  , \: a \sin  \beta  )} \:  \: is \:

  \displaystyle \: \sf {\:   \frac{y -  a \sin \alpha}{x -a \cos  \alpha }  = \frac{a \sin  \beta  -  a \sin \alpha}{a \cos  \beta  \: -a \cos  \alpha }\:}

\implies   \displaystyle \: \sf {\:   \frac{y -  a \sin \alpha}{x -a \cos  \alpha }  = \frac{ \sin  \beta  -  \sin \alpha}{ \cos  \beta  \: - \cos  \alpha }\:}

 \implies   \displaystyle \: \sf {\:   \frac{y -  a \sin \alpha}{x -a \cos  \alpha }  =  \frac{2  \cos \:  \frac{  \beta +  \alpha  }{2}  \sin \:  \frac{  \beta  -   \alpha  }{2}  }{2  \sin \:  \frac{  \beta +  \alpha  }{2}  \sin \:  \frac{   \alpha  -  \beta  }{2} } \: \:}

 \implies   \displaystyle \: \sf {\:  \frac{y -  a \sin \alpha}{x -a \cos  \alpha }  = -   \frac{  \cos \:  \frac{  \beta +  \alpha  }{2}   }{  \sin \:  \frac{  \beta +  \alpha  }{2}  } \: \:}

 \implies   \displaystyle \: \sf {\:  \frac{y -  a \sin \alpha}{x -a \cos  \alpha }  = -   \frac{  \cos \:  \frac{  \beta +  \alpha  }{2}   }{  \sin \:  \frac{  \beta +  \alpha  }{2}  } \: \:}

   \displaystyle \sf{\implies \: y   \sin \:  \frac{  \beta +  \alpha  }{2}\:  - a \sin \alpha   \sin \:  \frac{  \beta +  \alpha  }{2}  =  - x \:  \cos \:  \frac{  \beta +  \alpha  }{2} + a  \cos \alpha   \cos \:  \frac{  \beta +  \alpha  }{2} \: }

   \displaystyle \sf{\implies \: x \:  \cos \:  \frac{  \beta +  \alpha  }{2}  + y   \sin \:  \frac{  \beta +  \alpha  }{2}\:   =   a  \cos \alpha   \cos \:  \frac{  \beta +  \alpha  }{2}  + a \sin \alpha   \sin \:  \frac{  \beta +  \alpha  }{2} \: }

  \displaystyle  \sf{\implies \: x \:  \cos \:  \frac{  \beta +  \alpha  }{2}  + y   \sin \:  \frac{  \beta +  \alpha  }{2}\:   =   a ( \cos \alpha   \cos \:  \frac{  \beta +  \alpha  }{2}  +  \sin \alpha   \sin \:  \frac{  \beta +  \alpha  }{2}) \: }

  \displaystyle  \sf{\implies \: x \:  \cos \:  \frac{  \beta +  \alpha  }{2}  + y   \sin \:  \frac{  \beta +  \alpha  }{2}\:   =   a \cos( \alpha    - \frac{  \beta +  \alpha  }{2}  )\: }

  \displaystyle  \sf{\implies \: x \:  \cos \:  \frac{  \beta +  \alpha  }{2}  + y   \sin \:  \frac{  \beta +  \alpha  }{2}\:   =   a \cos(  \frac{  \alpha   -  \beta }{2}  )\: }

Similar questions