Math, asked by gyacoobali5946, 1 year ago

Find equation of line passing through the two points (3,5) and (-4,2)

Answers

Answered by charliejaguars2002
31

Answer:

\longrightarrow \displaystyle \Huge \boxed{\mathsf{Y=\frac{3}{7}x+\frac{26}{7}  }}}

Step-by-step explanation:

SLOPE FORMULA:

\Rightarrow \displaystyle \mathsf{\frac{Y_2-Y_1}{X_2-X_1} }

SLOPE-INTERCEPT FORM:

\Rightarrow \displaystyle \mathsf{y=mx+b}

SOLUTIONS & SOLVE:

(3,5) and (-4,2)

y₂=2

y₁=5

x₂=(-4)

x₁=3

Solve.

\displaystyle \mathsf{\frac{2-5}{(-4)-3}=\frac{-3}{-7}=\boxed{\mathsf{\frac{3}{7}}}}}   }

So, the slope is 3/7.

m represents the slope.

b represents the y-intercept.

Y-intercept is 26/7.

y=3/7x+26/7

\Rightarrow \Large\boxed{\mathsf{Y=\frac{3}{7}x+\frac{26}{7}  }}

As a result, the correct answer is y=3/7x+26/7.

Answered by Anonymous
11

  \large \sf \underline{ \underline{ \: Answer : \:  \:  \: }}

  \star \:   \: \sf7y - 3x - 26 = 0

\large \sf \underline{ \underline{ \: Solution  : \:  \:  \: }}

We know that , the equation of the line passing through the points  \sf( x_{1}, y_{1}) and  \sf(x _{2} ,y_{2}) is given by

 \sf \large \underline{ \:  \: \:   \fbox{  (y - y_{1}) =   \bigg(\frac{y_{2} - y_{1}}{x_{2} - x_{1}} \bigg) (x - x_{1}) \:  \: }  \:  \:  \:  \:  \:  }

So , the equation of line passing through points (3,5) and (-4,2) is

\implies\sf  (y - 5) =  \bigg( \frac{2 - 5}{ (- 4) - 3} \bigg)(x - 3) \\  \\\implies\sf  (y - 5) =   \bigg(\frac{ \cancel{- }3}{ \cancel{ - } 7} \bigg )(x - 3) \\  \\\implies\sf  7(y - 5) = 3(x - 3)  \\  \\  \implies\sf 7y - 3x - 26 = 0

Hence , the required equation of line is  \sf7y - 3x - 26 = 0

Similar questions