Math, asked by loke3712, 1 month ago

Find equation of tangent and the normal x^2+y^2-3x+10y-15=0 at (4, -11)

Answers

Answered by senboni123456
1

Step-by-step explanation:

Given, equation of circle {x}^{2}+{y}^{2}-3x+10y-15=0

Differentiating both sides w.r.t x,

2x + 2y \frac{dy}{dx} - 3 + 10 \frac{dy}{dx}  = 0  \\

 \implies \: (2x  - 3)+ (2y  + 10)\frac{dy}{dx}    = 0  \\

 \implies \:\frac{dy}{dx}    =  \frac{3 - 2x}{10 + 2y}   \\

Now,

 \implies \:m = \frac{dy}{dx}  \bigg | _{(4 ,  - 11)}     =  \frac{3 - 2(4)}{10 + 2( - 11)} =  \frac{ - 5}{ - 12}  =  \frac{5}{12}    \\

\large\tt{\bold{Equation\:\: of \:\:tangent:}}

(y + 11) = m(x - 4)

 \implies \: y + 11 =  \frac{5}{12} (x - 4) \\

 \implies \: 12y + 132 =  5 (x - 4) \\

 \implies \: 12y + 132 =  5x - 20 \\

 \implies \:  5x  - 12y-152 = 0

\large\tt{\bold{Equation \:\:of \:\:normal:}}

(y + 11)m + (x - 4) = 0

 \implies \: (y + 11) \frac{5}{12} + (x - 4) = 0 \\

 \implies \: (y + 11) 5+ 12(x - 4) = 0 \\

 \implies \: 5y + 55+ 12x - 48 = 0 \\

 \implies \: 12x  + 5y + 55 - 48 = 0 \\

 \implies \: 12x  + 5y +7 = 0 \\

Similar questions