Math, asked by debajitsri038, 1 month ago

find equation to the tangent to x²+y² = 8 at (2,2)​

Answers

Answered by mathdude500
7

\large\underline{\sf{Solution-}}

Given curve is

\rm :\longmapsto\: {x}^{2} +  {y}^{2} = 8

On differentiating w. r. t. x, we get

\rm :\longmapsto\: \dfrac{d}{dx}({x}^{2} +  {y}^{2} )=\dfrac{d}{dx} 8

We know,

\boxed{ \tt{ \: \dfrac{d}{dx} {x}^{n} =  {nx}^{n - 1} \: }} \:  \: and \:  \: \boxed{ \tt{ \: \dfrac{d}{dx}k \:  =  \: 0 \: }}

So, using these, we get

\rm :\longmapsto\:2x + 2y\dfrac{dy}{dx} = 0

\rm :\longmapsto\:x + y\dfrac{dy}{dx} = 0

\rm :\longmapsto\: y\dfrac{dy}{dx} =  - \:  x

\bf\implies \:\dfrac{dy}{dx} \:  =  \:  -  \: \dfrac{x}{y}

We know,

Let y = f(x) be any curve, then slope of tangent at any point (a, b) is given by

\boxed{ \tt{ \: Slope \: of \: tangent, \: m \:  =  \: \bigg(\dfrac{dy}{dx}\bigg) _{(a,b)} \: }}

Slope of tangent to the given curve at (2, 2) is

\rm :\longmapsto\: Slope \: of \: tangent, \: m \:  =  \: \bigg(\dfrac{dy}{dx}\bigg) _{(2,2)} \:

\rm :\longmapsto\: Slope \: of \: tangent, \: m \:  =  \: -  \: \dfrac{2}{2}

 \red{\rm :\longmapsto\: Slope \: of \: tangent, \: m \:  =  \: -  \: 1 }

So, equation of tangent which passes through the point (2, 2) having slope - 1, is

\rm :\longmapsto\:y - 2 =  - 1(x - 2)

\rm :\longmapsto\:y - 2 =  - x + 2

\rm :\longmapsto\:y + x =2 + 2

\bf\implies \:\boxed{ \tt{ \: x + y \:  =  \: 4 \: }}

Explore more

1. Let y = f(x) be any curve, then line which touches the curve y = f(x) exactly at one point say P is called tangent and that very point P, if we draw a perpendicular on tangent, that line is called normal to the curve at P.

2. If tangent is parallel to x - axis, its slope is 0.

3. If tangent is parallel to y - axis, its slope is not defined

4. Two lines having slope M and m are parallel, iff M = m

5. If two lines having slope M and m are perpendicular, iff Mm = - 1.

 \red{\begin{gathered}\boxed{\begin{array}{c|c} \bf f(x) & \bf \dfrac{d}{dx}f(x) \\ \\  \frac{\qquad \qquad}{} & \frac{\qquad \qquad}{} \\ \sf k & \sf 0 \\ \\ \sf sinx & \sf cosx \\ \\ \sf cosx & \sf  -  \: sinx \\ \\ \sf tanx & \sf  {sec}^{2}x \\ \\ \sf cotx & \sf  -  {cosec}^{2}x \\ \\ \sf secx & \sf secx \: tanx\\ \\ \sf cosecx & \sf  -  \: cosecx \: cotx\\ \\ \sf  \sqrt{x}  & \sf  \dfrac{1}{2 \sqrt{x} } \\ \\ \sf logx & \sf \dfrac{1}{x}\\ \\ \sf  {e}^{x}  & \sf  {e}^{x}  \end{array}} \\ \end{gathered}}

Attachments:
Answered by XxitsmrseenuxX
0

Answer:

\large\underline{\sf{Solution-}}

Given curve is

\rm :\longmapsto\: {x}^{2} +  {y}^{2} = 8

On differentiating w. r. t. x, we get

\rm :\longmapsto\: \dfrac{d}{dx}({x}^{2} +  {y}^{2} )=\dfrac{d}{dx} 8

We know,

\boxed{ \tt{ \: \dfrac{d}{dx} {x}^{n} =  {nx}^{n - 1} \: }} \:  \: and \:  \: \boxed{ \tt{ \: \dfrac{d}{dx}k \:  =  \: 0 \: }}

So, using these, we get

\rm :\longmapsto\:2x + 2y\dfrac{dy}{dx} = 0

\rm :\longmapsto\:x + y\dfrac{dy}{dx} = 0

\rm :\longmapsto\: y\dfrac{dy}{dx} =  - \:  x

\bf\implies \:\dfrac{dy}{dx} \:  =  \:  -  \: \dfrac{x}{y}

We know,

Let y = f(x) be any curve, then slope of tangent at any point (a, b) is given by

\boxed{ \tt{ \: Slope \: of \: tangent, \: m \:  =  \: \bigg(\dfrac{dy}{dx}\bigg) _{(a,b)} \: }}

Slope of tangent to the given curve at (2, 2) is

\rm :\longmapsto\: Slope \: of \: tangent, \: m \:  =  \: \bigg(\dfrac{dy}{dx}\bigg) _{(2,2)} \:

\rm :\longmapsto\: Slope \: of \: tangent, \: m \:  =  \: -  \: \dfrac{2}{2}

 \red{\rm :\longmapsto\: Slope \: of \: tangent, \: m \:  =  \: -  \: 1 }

So, equation of tangent which passes through the point (2, 2) having slope - 1, is

\rm :\longmapsto\:y - 2 =  - 1(x - 2)

\rm :\longmapsto\:y - 2 =  - x + 2

\rm :\longmapsto\:y + x =2 + 2

\bf\implies \:\boxed{ \tt{ \: x + y \:  =  \: 4 \: }}

Explore more

1. Let y = f(x) be any curve, then line which touches the curve y = f(x) exactly at one point say P is called tangent and that very point P, if we draw a perpendicular on tangent, that line is called normal to the curve at P.

2. If tangent is parallel to x - axis, its slope is 0.

3. If tangent is parallel to y - axis, its slope is not defined

4. Two lines having slope M and m are parallel, iff M = m

5. If two lines having slope M and m are perpendicular, iff Mm = - 1.

 \red{\begin{gathered}\boxed{\begin{array}{c|c} \bf f(x) & \bf \dfrac{d}{dx}f(x) \\ \\  \frac{\qquad \qquad}{} & \frac{\qquad \qquad}{} \\ \sf k & \sf 0 \\ \\ \sf sinx & \sf cosx \\ \\ \sf cosx & \sf  -  \: sinx \\ \\ \sf tanx & \sf  {sec}^{2}x \\ \\ \sf cotx & \sf  -  {cosec}^{2}x \\ \\ \sf secx & \sf secx \: tanx\\ \\ \sf cosecx & \sf  -  \: cosecx \: cotx\\ \\ \sf  \sqrt{x}  & \sf  \dfrac{1}{2 \sqrt{x} } \\ \\ \sf logx & \sf \dfrac{1}{x}\\ \\ \sf  {e}^{x}  & \sf  {e}^{x}  \end{array}} \\ \end{gathered}}

Attachments:
Similar questions