Math, asked by DHANUSH8272, 1 year ago

Find expansion of tan(x+π/4) up to x^4 hence find tan(43)

Answers

Answered by sonuvuce
32

Answer:

\tan(x+\frac{\pi}{4})=1+2x+2x^2+2x^3++2x^4+.....

\implies \tan 43^\circ=0.9325

Step-by-step explanation:

A question related to Taylor's series

The expansion of \tan x is

\tan x=1+2(x-\frac{\pi}{4})+2(x-\frac{\pi}{4})^2+...

Therefore,

\tan(x+\frac{\pi}{4})=1+2x+2x^2+2x^3++2x^4+.....

Now,

\tan 43^\circ=\tan(45^\circ-2^\circ)

2^\circ=\frac{\pi}{90} radian

Thus,

\tan 43^\circ=\tan(\frac{\pi}{4}-\frac{\pi}{90})

\implies \tan 43^\circ=1+2\times (-\frac{\pi}{90})+2\times (-\frac{\pi}{90})^2+2\times (-\frac{\pi}{90})^3+2\times (-\frac{\pi}{90})^4+....

Let (-\frac{\pi}{90})=t

\tan 43^\circ=1+2t+2t^2+2t^3+...

\implies \tan 43^\circ=2+2t+2t^2+2t^3+...-1

\implies \tan 43^\circ=2(1+t+t^2+t^3+...)-1

\implies \tan 43^\circ=2\times \frac{1}{1-t}-1

\implies \tan 43^\circ=2\times \frac{1}{1+\frac{\pi}{90}}-1

\implies \tan 43^\circ=2\times \frac{90}{90+\pi}-1

\implies \tan 43^\circ=\frac{180}{90+3.14159}-1

\implies \tan 43^\circ=1.9325-1

\implies \tan 43^\circ=0.9325

Hope this answer is helpful.

Similar questions