Physics, asked by zakirnoori832, 5 hours ago

find expression for velocity and acceleration of a moving particle in plane polar coordinates​

Answers

Answered by avabooleav
1

Answer:

Explanation:

Velocity And Acceleration In Cylindrical Coordinates

Velocity of a physical object can be obtained by the change in an object's position in respect to time.

Generally, x, y, and z are used in Cartesian coordinates and these are replaced by r, θ, and z.

Answered by brokendreams
0

For a moving particle, the velocity is \vec{v} = \dot{r} \hat{r} + r \dot{\theta} \hat{\theta} while the acceleration is \vec{a} = (\ddot{r}-r\dot{\theta^2}) \hat{r} + (r \ddot{\theta}+ 2 \dot{r} \dot{\theta}) \hat{\theta} in the plane polar coordinates.

Deriving expression for velocity

In the cartesian coordinate system, \vec{r} = x \hat{i} + y \hat{j} . . . . . . . . (1)

And, for the plane polar coordinate, the position vector \vec{r} = r \cdot \hat{r}  

Therefore, by coordinate transformation;

\vec{r} = r cos(\theta) \hat{i} + r sin(\theta) \hat{j}

And,

\hat{r} = \frac{\partial \vec{r}/ \partial r}{|\partial \vec{r}/ \partial r|} = cos(\theta) \hat{i} + sin(\theta) \hat{j} \\\Rightarrow \dot{\hat{r}} = \dot{\theta}(-sin(\theta) \hat{i} + cos(\theta) \hat{j}) = \dot{\theta} \hat{\theta}   . . . . . . . (2)

\hat{\theta} = \frac{\partial \vec{r}/ \partial \theta}{|\partial \vec{r}/ \partial \theta|} = - sin(\theta) \hat{i} + cos(\theta) \hat{j}\\\Rightarrow \dot{\hat{\theta}} = -\dot{\theta}(sin(\theta) \hat{i} + cos(\theta) \hat{j}) =  -\dot{\theta} \hat{r} . . . . . . . (3)

Since, \vec{v} = \frac{d\vec{r}}{dt}, therefore, \vec{v} = \frac{d\vec{r}}{dt} = \frac{(r \cdot \hat{r})}{dt} = \dot{r} \hat{r} + r \dot{\hat{r}}

from (2), we will get

\vec{v} = \dot{r} \hat{r} + r \dot{\theta}\hat{\theta} . . . . . . . (4)

Deriving expression for acceleration

Since \vec{a} = \frac{d\vec{v}}{dt}

therefore, \vec{a} = \frac{d\vec{v}}{dt} = \frac{d(\dot{r} \hat{r} + r \dot{\theta}\hat{\theta})}{dt} = \frac{d(\dot{r} \hat{r})}{dt}  + \frac{d(r \dot{\theta}\hat{\theta})}{dt} . . . . . . . (5)

Solving (5) further, you will get \vec{a} = (\ddot{r}-r\dot{\theta^2}) \hat{r} + (r \ddot{\theta}+ 2 \dot{r} \dot{\theta}) \hat{\theta}

Hence, for a moving particle, the velocity is \vec{v} = \dot{r} \hat{r} + r \dot{\theta} \hat{\theta} while the acceleration is \vec{a} = (\ddot{r}-r\dot{\theta^2}) \hat{r} + (r \ddot{\theta}+ 2 \dot{r} \dot{\theta}) \hat{\theta} in the plane polar coordinates where the \vec{r} = r \cdot \hat{r} is the position vector of the particle.

Similar questions