Math, asked by pooja2224, 1 month ago

find f(-1) & f(-5) for f(x)= x^2+6x-5​

Answers

Answered by Anonymous
114

\sf \bf {\boxed {\mathbb {GIVEN:}}}

\:f(x) =  {x}^{2}  + 6x - 5

\sf \bf {\boxed {\mathbb {TO\:FIND:}}}

\:(i)\:f( - 1) \:  \: and \: \: (ii) \: f( - 5)

\sf \bf {\boxed {\mathbb {SOLUTION:}}}

For finding f(-1) and f(-5), we just have to plug in '-1' and '-5' for all values of x.

And so we have,

i) \:  f( - 1) = ( { - 1})^{2}  + 6( - 1) - 5

 = ( - 1 \times  - 1) - 6 - 5

 = 1 - 6 - 5

 =  1 - 11

 =  - 10

ii) \: f( - 5) =  ({ - 5})^{2}  + 6( - 5) - 5

 = ( - 5 \times  - 5)  - 30 - 5

 = 25 - 30 - 5

 = 25 - 35

 =  - 10

Therefore, the values of f(-1) and f(-5) are \boxed{ -10   } and \boxed{   -10 } respectively.

\sf\red{Hope\:it\:helps.}

Answered by mprakharsingh2006
2

Answer:

\:f(x) = {x}^{2} + 6x - 5f(x)=x

2

+6x−5

\sf \bf {\boxed {\mathbb {TO\:FIND:}}}

TOFIND:

\:(i)\:f( - 1) \: \: and \: \: (ii) \: f( - 5)(i)f(−1)and(ii)f(−5)

\sf \bf {\boxed {\mathbb {SOLUTION:}}}

SOLUTION:

For finding f(-1)f(−1) and f(-5)f(−5) , we just have to plug in '-1'

−1

and '-5'

−5

for all values of xx .

And so we have,

i) \: f( - 1) = ( { - 1})^{2} + 6( - 1) - 5i) f(−1)=(−1)

2

+6(−1)−5

= ( - 1 \times - 1) - 6 - 5=(−1×−1)−6−5

= 1 - 6 - 5=1−6−5

= 1 - 11=1−11

= - 10=−10

ii) \: f( - 5) = ({ - 5})^{2} + 6( - 5) - 5ii)f(−5)=(−5)

2

+6(−5)−5

= ( - 5 \times - 5) - 30 - 5=(−5×−5)−30−5

= 25 - 30 - 5=25−30−5

= 25 - 35=25−35

= - 10=−10

Therefore, the values of f(-1)f(−1) and f(-5)f(−5) are \boxed{ -10 }

−10

and \boxed{ -10 }

−10

respectively.

Similar questions