find f(-1) & f(-5) for f(x)= x^2+6x-5
Answers
♨
☎
For finding and , we just have to plug in and for all values of .
And so we have,
Therefore, the values of and are and respectively.
Answer:
\:f(x) = {x}^{2} + 6x - 5f(x)=x
2
+6x−5
\sf \bf {\boxed {\mathbb {TO\:FIND:}}}
TOFIND:
\:(i)\:f( - 1) \: \: and \: \: (ii) \: f( - 5)(i)f(−1)and(ii)f(−5)
\sf \bf {\boxed {\mathbb {SOLUTION:}}}
SOLUTION:
For finding f(-1)f(−1) and f(-5)f(−5) , we just have to plug in '-1'
′
−1
′
and '-5'
′
−5
′
for all values of xx .
And so we have,
i) \: f( - 1) = ( { - 1})^{2} + 6( - 1) - 5i) f(−1)=(−1)
2
+6(−1)−5
= ( - 1 \times - 1) - 6 - 5=(−1×−1)−6−5
= 1 - 6 - 5=1−6−5
= 1 - 11=1−11
= - 10=−10
ii) \: f( - 5) = ({ - 5})^{2} + 6( - 5) - 5ii)f(−5)=(−5)
2
+6(−5)−5
= ( - 5 \times - 5) - 30 - 5=(−5×−5)−30−5
= 25 - 30 - 5=25−30−5
= 25 - 35=25−35
= - 10=−10
Therefore, the values of f(-1)f(−1) and f(-5)f(−5) are \boxed{ -10 }
−10
and \boxed{ -10 }
−10
respectively.