Physics, asked by faraday4lyff, 7 months ago

Find F1 + F2 - F3 from diagram

Attachments:

Answers

Answered by NewGeneEinstein
1

Given Forces

  • F1=2N
  • F2=2N
  • F3=1N

Now lets find

\\ \sf\longmapsto F_1+F_2-F_3

  • Put the values

\\ \sf\longmapsto 2N+2N-1N

\\ \sf\longmapsto 4N-1N

\\ \sf\longmapsto 3N

Answered by nirman95
3

In these type of questions, we will totally use CONCEPTS OF VECTORS.

  • First resolve the vectors in perpendicular components !

F1 = 2 \hat{j}

_____________

F2= 2  \cos( {60}^{ \circ} ) \hat{i} - 2 \sin( {60}^{ \circ} )  \hat{j}

 \implies F2= 1 \hat{i} -  \sqrt{3}   \hat{j}

_____________

F3=  - 1  \cos( {30}^{ \circ} ) \hat{i}  + 1\sin( {30}^{ \circ} )  \hat{j}

 \implies F3=  - \dfrac{ \sqrt{3} }{2} \hat{i}  +  \dfrac{1}{2}  \hat{j}

_____________

  • Now, solve the questions:

 \vec{F1} +  \vec{F2} -  \vec{F3}

 = (2 \hat{j}) +  (\hat{i} -  \sqrt{3}  \hat{j}) - ( -  \dfrac{ \sqrt{3} }{2}  \hat{i} +  \dfrac{1}{2}  \hat{j})

  \boxed{=  \dfrac{2 +  \sqrt{3} }{2} \hat{i} +  \dfrac{3 - 2 \sqrt{3} }{2}  \hat{j} }

Hope It Helps.

Similar questions