Math, asked by sohelshekh2212oy04tw, 10 months ago

Find Factors of 2x ^3 + 5x ^2 - 11x +4

Answers

Answered by charliejaguars2002
4

Answer:

\Large\boxed{(X-1)(2x-1)(X+4)}

Step-by-step explanation:

Given:

Find the factors of 2x³+5x²-11x+4

Solutions:

First, you used rational root theorem formula.

\Large\boxed{\textnormal{RATIONAL ROOT THEOREM FORMULA}}}

\displaystyle A_0=4

\displaystyle A_N=2

\displaystyle A_0=1, 2, 4

\displaystyle A_N= 1,2

Rational numbers are:

\displaystyle \pm \frac{1,\:2,\:4}{1,\:2}

Factors of x-1.

\displaystyle (x-1)\frac{2x^3+5x^2-11x+4}{x-1}

\displaystyle \frac{2x^3+5x^2-11x+4}{x-1}=2x^2+7x-4

Solve.

Factor it out.

\displaystyle 2x^2+7x-4

\displaystyle \left(2x^2-x\right)+\left(8x-4\right)

Factor it out by the x of 2x²-x.

\Large\boxed{\textnormal{EXPONENT RULES}}

\displaystyle A^B^+^C=A^BA^C

\displaystyle XX=X^2

\displaystyle 2XX-X

Common term of x.

\displaystyle \boxed{X(2x-1)}

Factor it out by the 4 of 8x-4.

Multiply.

\displaystyle 2*4=8

Common term of 4.

\displaystyle 4(2x-1)

\displaystyle x\left(2x-1\right)+4\left(2x-1\right)

Common term of 2x-1.

\displaystyle \boxed{(2x-1)(x+4)}

\Large\boxed{(X-1)(2x-1)(X+4)}

Hence, the correct answer is (x-1)(2x-1)(x+4).

Similar questions