Math, asked by sonam9759, 9 months ago

Find find the centre and radius of the circle.
x² + y² - 4x - 8y - 45 = 0.​

Answers

Answered by Anonymous
27

⠀⠀ıllıllı uoᴉʇnloS ıllıllı

\setlength{\unitlength}{1.0 cm}}\begin{picture}(12,4)\thicklines\put(1,1){\line(1,0){6.5}}\put(1,1.1){\line(1,0){6.5}}\end{picture}

The equation of the given circle is x² + y² - 4x - 8y - 45 = 0.

 {x}^{2}  +  {y}^{2}  - 4x - 8y - 45 \\  =  > ( {x}^{2}  - 4x) +  ({y}^{2}  - 8) = 45 \\  =  >  {x}^{2}  - 2(x)(2) +  {2}^{2}  +  {y}^{2}  - 2(y)(4) +  {4}^{2}  - 4 - 16 = 45 \\  =  > (x - 2)2 \:  + (y - 4)2 = 65 \\  =  > (x - 2)2 + (y - 4)2 =  ( \sqrt{65) } { }^{2}    \\  \\ Which \: is \: of \: the \: form \: (x - h)^{2}  + (y - k) ^{2}  = r ^{2} , \: Where,

  • h = 2
  • k = 4
  • r = \sqrt{65}

Thus, The centre of the given circle is (2, 4), while its radius is \sqrt{65}

\setlength{\unitlength}{1.0 cm}}\begin{picture}(12,4)\thicklines\put(1,1){\line(1,0){6.5}}\put(1,1.1){\line(1,0){6.5}}\end{picture}

Similar questions