Math, asked by Papa3770, 10 months ago

Find Find the value of log⁡(-6). *
log6+2iπ
log⁡36+iπ
log⁡9+iπ
log6+iπ value of log(-6)

Answers

Answered by MaheswariS
2

\textbf{Given:}

\mathsf{log(-6)}

\textbf{To find:}

\textsf{The value of}

\mathsf{\log(-6)}

\textbf{Solution:}

\textsf{Consider,}

\mathsf{\log(-6)}

\mathsf{=\log(6{\times}(-1))}

\mathsf{=\log\,6+\log(-1)}

\mathsf{Using}

\boxed{\mathsf{-1=cos\,\pi+\,i\,sin\,\pi=e^{i\,\pi}}}

\mathsf{=\log\,6+\log\,e^{i\,\pi}}

\mathsf{=\log\,6+i\,\pi\,\log\,e}

\mathsf{=\log\,6+i\,\pi}

\implies\boxed{\mathsf{\log(-6)=\log\,6+i\,\pi}}

\textbf{Note:}

\textsf{When considering the general value}

\mathsf{\log(-6)=\log\,6+i\,(\pi+2n\,\pi)}

Similar questions