find first four terms of sequence of which sum to n terms is 1/2n (7n-1)
Answers
Answered by
43
Given, 
We know, one important concept,
use it here,

So,![\bold{T_n=\frac{1}{2}n(7n-1)-\frac{1}{2}(n-1)(7n-8)}\\\\=\bold{\frac{1}{2}[7n^2-n-7n^2+15n-8]}\\\\=\bold{\frac{1}{2}(14n-8)}\\\\=\bold{7n-4} \bold{T_n=\frac{1}{2}n(7n-1)-\frac{1}{2}(n-1)(7n-8)}\\\\=\bold{\frac{1}{2}[7n^2-n-7n^2+15n-8]}\\\\=\bold{\frac{1}{2}(14n-8)}\\\\=\bold{7n-4}](https://tex.z-dn.net/?f=%5Cbold%7BT_n%3D%5Cfrac%7B1%7D%7B2%7Dn%287n-1%29-%5Cfrac%7B1%7D%7B2%7D%28n-1%29%287n-8%29%7D%5C%5C%5C%5C%3D%5Cbold%7B%5Cfrac%7B1%7D%7B2%7D%5B7n%5E2-n-7n%5E2%2B15n-8%5D%7D%5C%5C%5C%5C%3D%5Cbold%7B%5Cfrac%7B1%7D%7B2%7D%2814n-8%29%7D%5C%5C%5C%5C%3D%5Cbold%7B7n-4%7D)
Now, Tn = 7n - 4
First term , n = 1 ⇒T₁ = 7 × 1 - 4 = 3
second term , n = 2 ⇒, T₂ = 7 × 2 - 4 = 10
3rd term , n = 3 ⇒T₃ = 7 × 3 - 4 = 17
4th term , n = 4 ⇒T₄ = 7 × 4 - 4 = 24
We know, one important concept,
So,
Now, Tn = 7n - 4
First term , n = 1 ⇒T₁ = 7 × 1 - 4 = 3
second term , n = 2 ⇒, T₂ = 7 × 2 - 4 = 10
3rd term , n = 3 ⇒T₃ = 7 × 3 - 4 = 17
4th term , n = 4 ⇒T₄ = 7 × 4 - 4 = 24
ÄrnoVictorDoriän:
can you explain Sn-1 = 1/2(n-1)(7n-8)
Similar questions
English,
9 months ago
Sociology,
9 months ago
English,
1 year ago
Math,
1 year ago
Social Sciences,
1 year ago
Physics,
1 year ago
Social Sciences,
1 year ago